
Polyspace® Bug Finder™

User’s Guide

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ User’s Guide
© COPYRIGHT 2013–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

September 2013 Online only New for Version 1.0 (Release 2013b)
March 2014 Online Only Revised for Version 1.1 (Release 2014a)
October 2014 Online only Revised for Version 1.2 (Release 2014b)
March 2015 Online only Revised for Version 1.3 (Release 2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Project Configuration
1

What Is a Project? . 1-3

What is a Project Template? . 1-4

Open Polyspace Bug Finder . 1-5

Create New Project . 1-6

Create Project Automatically . 1-7

Requirements for Project Creation from Build Systems . . . 1-10

Your Compiler Is Not Supported . 1-13

Create Project Using Visual Studio Information 1-17
Trace Visual Studio Build . 1-17
Import Visual Studio Project . 1-20

Troubleshooting Project Creation from Visual Studio
Build . 1-21

Cannot Create Project from Visual Studio Build 1-21
Compilation Error After Creating Project from Visual Studio

Build . 1-21

Add Source Files and Include Folders 1-23

Specify Analysis Options . 1-24
Specify Options in User Interface . 1-24
Specify Options from DOS and UNIX Command Line 1-25
Specify Options from MATLAB Command Line 1-25

Save Analysis Options as Project Template 1-26

iv Contents

Specify External Text Editor . 1-30

Change Default Font Size . 1-32

Define Custom Review Status . 1-33

Compilation Errors . 1-37

Set Up Multitasking Analysis . 1-38

Review Concurrency Defects . 1-42

Annotate Code for Known Defects . 1-45
How to Add Annotations . 1-45
Syntax for Code Annotations . 1-45

Annotate Code for Rule Violations . 1-47
How to Add Annotations . 1-47
Syntax for Code Annotations . 1-48

Copy and Paste Annotations . 1-50

Modify Predefined Target Processor Attributes 1-52

Specify Generic Target Processors . 1-54
Define Generic Target . 1-54
Common Generic Targets . 1-55
View or Modify Existing Generic Targets 1-56
Delete Generic Target . 1-57

Compile Operating System-Dependent Code 1-58
Predefined Compilation Flags for C Code 1-58
Predefined Compilation Flags for C++ Code 1-59
My Target Application Runs on Linux 1-62
My Target Application Runs on Solaris 1-62
My Target Application Runs on Vxworks 1-62
My Target Application Does Not Run on Linux, vxworks nor

Solaris . 1-63

Address Alignment . 1-64

Ignore or Replace Keywords Before Compilation 1-65
Content of myTpl.pl file . 1-65

v

Perl Regular Expression Summary 1-66

Analyze Keil or IAR Dialects . 1-68

Supported C++ 2011 Standards . 1-74

Gather Compilation Options Efficiently 1-78

Specify Constraints . 1-80
Create Constraint Template . 1-80
Update Existing Template . 1-82

Constraints . 1-83

Storage of Polyspace Preferences . 1-87

Coding Rule Sets and Concepts
2

Rule Checking . 2-2
Polyspace Coding Rule Checker . 2-2
Differences Between Bug Finder and Code Prover 2-2

Polyspace MISRA C 2004 and MISRA AC AGC Checkers . . . 2-4

Software Quality Objective Subsets (C:2004) 2-5
Rules in SQO-Subset1 . 2-5
Rules in SQO-Subset2 . 2-6

Software Quality Objective Subsets (AC AGC) 2-10
Rules in SQO-Subset1 . 2-10
Rules in SQO-Subset2 . 2-11

MISRA C:2004 Coding Rules . 2-14
Supported MISRA C:2004 Rules . 2-14
Unsupported MISRA C:2004 Rules 2-50

Polyspace MISRA C:2012 Checker . 2-53

vi Contents

Software Quality Objective Subsets (C:2012) 2-54
Guidelines in SQO-Subset1 . 2-54
Guidelines in SQO-Subset2 . 2-55

Unsupported MISRA C:2012 Guidelines 2-59

Polyspace MISRA C++ Checker . 2-61

Software Quality Objective Subsets (C++) 2-62
SQO Subset 1 – Direct Impact on Selectivity 2-62
SQO Subset 2 – Indirect Impact on Selectivity 2-64

MISRA C++ Coding Rules . 2-69
Supported MISRA C++ Coding Rules 2-69
Unsupported MISRA C++ Rules . 2-88

Polyspace JSF C++ Checker . 2-94

JSF C++ Coding Rules . 2-95
Supported JSF C++ Coding Rules . 2-95
Unsupported JSF++ Rules . 2-118

Check Coding Rules from the Polyspace
Environment

3
Activate Coding Rules Checker . 3-2

Select Specific MISRA or JSF Coding Rules 3-6

Create Custom Coding Rules . 3-9

Format of Custom Coding Rules File 3-11

Exclude Files From Analysis . 3-12

Allow Custom Pragma Directives . 3-13

Specify Boolean Types . 3-14

vii

Find Coding Rule Violations . 3-15

Review Coding Rule Violations . 3-16

Filter and Group Coding Rule Violations 3-18

Find Bugs From the Polyspace Environment
4

Choose Specific Defects . 4-2

Run Local Analysis . 4-3

Run Remote Batch Analysis . 4-4

Monitor Analysis . 4-5

Specify Results Folder . 4-6

View Results in the Polyspace Environment
5

Open Results . 5-2

View Results Summary in Polyspace Metrics 5-3

Download Results From Polyspace Metrics 5-5

Filter and Group Results . 5-8

Limit Display of Defects . 5-16

Generate Reports . 5-19

Review and Comment Results . 5-21

viii Contents

Review Code Metrics . 5-25
Impose Limits on Metrics . 5-25
Comment and Justify Limit Violations 5-28

Import Comments from Previous Analyses 5-29

View Code Sequence Causing Defect 5-30

Results Folder Contents . 5-32
Files in the Results Folder . 5-32

Windows Used to Review Results . 5-33
Dashboard . 5-33
Results Summary . 5-36
Source . 5-38
Check Details . 5-44

Bug Finder Defect Categories . 5-46
Numerical . 5-46
Static Memory . 5-46
Dynamic Memory . 5-46
Programming . 5-47
Data-flow . 5-47
Concurrency . 5-47
Other . 5-48

Common Weakness Enumeration from Bug Finder Defects 5-49
Common Weakness Enumeration . 5-49
Polyspace Bug Finder and CWE Compatibility 5-49

Find CWE Identifiers from Defects . 5-51
View CWE Identifiers . 5-51
Filter CWE Identifiers . 5-51
Generate Report with CWE Identifiers 5-51

Mapping Between CWE Identifiers and Defects 5-53

ix

Command-Line Analysis
6

Create Project Automatically at Command Line 6-2

Run Local Analysis from Command Line 6-3
Specify Sources and Analysis Options Directly 6-3
Specify Sources and Analysis Options in Text File 6-4
Create Options File from Build System 6-4

Run Remote Analysis at Command Line 6-5
Run Remote Analysis . 6-5
Manage Remote Analysis . 6-6
Download Results . 6-8

Create Project Automatically from MATLAB Command
Line . 6-9

Polyspace Bug Finder Analysis in Simulink
7

Embedded Coder Considerations . 7-2
Default Options . 7-2
Recommended Polyspace Bug Finder Options for Analyzing

Generated Code . 7-3
Hardware Mapping Between Simulink and Polyspace 7-4

TargetLink Considerations . 7-5
TargetLink Support . 7-5
Default Options . 7-5
Lookup Tables . 7-6
Code Generation Options . 7-6

Generate and Analyze Code . 7-7

Main Generation for Model Analysis 7-9

Review Generated Code Results . 7-11

x Contents

Troubleshoot Back to Model . 7-13
Back-to-Model Links Do Not Work 7-13
Your Model Already Uses Highlighting 7-13

Configure Model for Code Analysis
8

Configure Simulink Model . 8-2

Recommended Model Settings for Code Analysis 8-3

Check Simulink Model Settings . 8-6
Check Simulink Model Settings Using the Code Generation

Advisor . 8-6
Check Simulink Model Settings Before Analysis 8-7
Check Simulink Model Settings Automatically 8-9

Annotate Blocks for Known Results 8-12

Configure Code Analysis Options
9

Polyspace Configuration for Generated Code 9-2

Include Handwritten Code . 9-3

Configure Analysis Depth for Referenced Models 9-4

Check Coding Rules Compliance . 9-5

Configure Polyspace Analysis Options and Properties 9-7
Set Advanced Analysis Options . 9-7
Save a Polyspace Configuration File Template 9-8
Use a Custom Configuration File . 9-9
Remove Polyspace Options From Simulink Model 9-9

Set Custom Target Settings . 9-11

xi

Set Up Remote Batch Analysis . 9-14

Manage Results . 9-15
Open Polyspace Results Automatically 9-15
Specify Location of Results . 9-16
Save Results to a Simulink Project 9-17

Specify Signal Ranges . 9-18
Specify Signal Range through Source Block Parameters . . . 9-18
Specify Signal Range through Base Workspace 9-20

Run Polyspace on Generated Code
10

Specify Type of Analysis to Perform 10-2

Run Analysis for Embedded Coder . 10-5

Run Analysis for TargetLink . 10-6

Monitor Progress . 10-7
Local Analyses . 10-7
Remote Batch Analyses . 10-7

Check Coding Rules from Eclipse
11

Activate Coding Rules Checker . 11-2

Select Specific MISRA or JSF Coding Rules 11-6

Create Custom Coding Rules File . 11-9

Contents of Custom Coding Rules File 11-11

Exclude Files From Analysis . 11-12

xii Contents

Allow Custom Pragma Directives . 11-13

Specify Boolean Types . 11-14

Find Coding Rule Violations . 11-15

Review Coding Rule Violations . 11-16

Apply Coding Rule Violation Filters 11-18

Find Bugs from Eclipse
12

Run Analysis . 12-2

Customize Analysis Options . 12-3

View Results in Eclipse
13

Filter and Group Results . 13-2

View Results . 13-8
View Results in Eclipse . 13-8
View Results in Polyspace Environment 13-8

Review and Fix Results . 13-9

Understanding the Results Views . 13-13
Results Summary . 13-13
Check Details . 13-15

xiii

Check Coding Rules from Microsoft Visual Studio
14

Activate C++ Coding Rules Checker 14-2

Exclude Files From Analysis . 14-4

Find Bugs from Microsoft Visual Studio
15

Run Polyspace in Visual Studio . 15-2

Monitor Progress in Visual Studio . 15-5
Local Analysis . 15-5
Remote Analysis . 15-7

Customize Polyspace Options . 15-8

Configuration File and Default Options 15-9

Bug Finding in Visual Studio . 15-10

Open Results from Microsoft Visual Studio
16

Open Results in Polyspace Environment 16-2

1

Project Configuration

• “What Is a Project?” on page 1-3
• “What is a Project Template?” on page 1-4
• “Open Polyspace Bug Finder” on page 1-5
• “Create New Project” on page 1-6
• “Create Project Automatically” on page 1-7
• “Requirements for Project Creation from Build Systems” on page 1-10
• “Your Compiler Is Not Supported” on page 1-13
• “Create Project Using Visual Studio Information” on page 1-17
• “Troubleshooting Project Creation from Visual Studio Build” on page 1-21
• “Add Source Files and Include Folders” on page 1-23
• “Specify Analysis Options” on page 1-24
• “Save Analysis Options as Project Template” on page 1-26
• “Specify External Text Editor” on page 1-30
• “Change Default Font Size” on page 1-32
• “Define Custom Review Status” on page 1-33
• “Compilation Errors” on page 1-37
• “Set Up Multitasking Analysis” on page 1-38
• “Review Concurrency Defects” on page 1-42
• “Annotate Code for Known Defects” on page 1-45
• “Annotate Code for Rule Violations” on page 1-47
• “Copy and Paste Annotations” on page 1-50
• “Modify Predefined Target Processor Attributes” on page 1-52
• “Specify Generic Target Processors” on page 1-54
• “Compile Operating System-Dependent Code” on page 1-58
• “Address Alignment” on page 1-64

1 Project Configuration

1-2

• “Ignore or Replace Keywords Before Compilation” on page 1-65
• “Analyze Keil or IAR Dialects” on page 1-68
• “Supported C++ 2011 Standards” on page 1-74
• “Gather Compilation Options Efficiently” on page 1-78
• “Specify Constraints” on page 1-80
• “Constraints” on page 1-83
• “Storage of Polyspace Preferences” on page 1-87

 What Is a Project?

1-3

What Is a Project?

In Polyspace® software, a project is a named set of parameters for your software project's
source files. A project includes:

• Source files
• Include folders
• A configuration, specifying a set of analysis options

In the Polyspace interface, use the Project Browser and Configuration panes to create
and modify a project.

1 Project Configuration

1-4

What is a Project Template?

A Project Template is a predefined set of analysis options for a specific compilation
environment. When creating a new project, you have the option to:

• Use an existing template to automatically set analysis options for your compiler.

Polyspace software provides predefined templates for common compilers such as IAR,
Kiel, and VxWorks Aonix, Rational, and Greenhills. For additional templates,
see Polyspace Compiler Templates .

• Set analysis options manually. You can save your options to a custom template
and reuse them later. For more information, see “Save Analysis Options as Project
Template”.

http://www.mathworks.com/matlabcentral/fileexchange/35927-polyspace-compiler-templates

 Open Polyspace Bug Finder

1-5

Open Polyspace Bug Finder

After you install MATLAB® and Polyspace, you can open Polyspace Bug Finder™ from
the desktop shortcut created during installation. Other ways to open Polyspace are:

• via MATLAB.

• In the apps gallery, select Polyspace Bug Finder.
• In the Command Window, enter:

polyspaceBugFinder

• via the command-line.

• DOS: MATLAB Install\polyspace\bin\polyspace-bug-finder
• UNIX: MATLAB Install/polyspace/bin/polyspace-bug-finder

Where MATLAB Install is your MATLAB installation folder.

Polyspace Bug Finder can be opened simultaneously with Polyspace Code Prover™ or a
second instance of Polyspace Bug Finder. However, only one code analysis can be run at a
time.

If you try to run Polyspace processes from multiple windows, you will get a License
Error –4,0. To avoid this error, close any additional Polyspace windows before running
an analysis.

1 Project Configuration

1-6

Create New Project

This example shows how to create a new project in Polyspace Bug Finder. Before you
create a project, you must know:

• Location of source files
• Location of include files
• Location where analysis results will be stored

For the three locations, you will find it convenient to create three subfolders under a
common project folder. For instance, under the folder polyspace_project, you can
create three subfolders sources,includes and results.

1 Select File > New Project.
2 In the Project – Properties dialog box, enter the following information:

• Project name
• Location: Folder where you will store the project file with extension .psprj.

You can use this file to open an existing project.

The software assigns a default location to your project. You can change this
default on the Project and Results Folder tab in the Polyspace Preferences
dialog box.

• Project language
3 Add source files and include folders to your project.

• Navigate to the location where you stored your source files. Select the source files
for your project. Click Add Source Files.

• The software automatically adds the standard include files to your project. To use
custom include files, navigate to the folder containing your include files. Click
Add Include Folders.

4 Click Finish.

The new project opens in the Project Browser pane. Your source files are
automatically copied to the first module in the project.

5 Save the project. Select File > Save or enter Ctrl+S.

To close the project at any time, in the Project Browser, right-click the project node
and select Close.

 Create Project Automatically

1-7

Create Project Automatically

If you use build automation scripts to build your source code, you can automatically setup
a Polyspace project from your scripts. The automatic project setup runs your automation
scripts to determine:

• Source files.
• Includes.
• Target & compiler options. For more information on these options, see:

• C Code: “Target & Compiler”
• C++ Code: “Target & Compiler”

1 Select File > New Project.
2 On the Project – Properties dialog box, after specifying the project name, location

and language, under Project configuration, select Create from build command.
3 On the next window, enter the following information:

Field Description

Specify command
used for building
your source files

If you use an IDE such as Visual Studio® or Eclipse™
to build your project, specify the full path to your IDE

executable or navigate to it using the button. For a
tutorial using Visual Studio, see “Trace Visual Studio Build”.

Example: "C:\Program Files (x86)\Microsoft
Visual Studio 10.0\Common7\IDE\VCExpress.exe"

If you use command-line tools to build your project, specify
the appropriate command.

Example:

• make -B -f makefileName or make -W
makefileName

• "mingw32-make.exe -B -f makefilename"

Specify working
directory for

Specify the folder from which you run your build automation
script.

1 Project Configuration

1-8

Field Description

running build
command

If you specify the full path to your executable in the previous
field, this field is redundant. Specify any folder.

Add advanced
configure options

Specify additional options for advanced tasks such as
incremental build. For the full list of options, see the -
options value argument for polyspaceConfigure.

4
Click .

• If you entered your build command, Polyspace runs the command and sets up a
project.

• If you entered the path to an executable, the executable runs. Build your source
code and close the executable. Polyspace traces your build and sets up a project.

For example, in Visual Studio 2010, use Tools > Rebuild Solution to build your
source code. Then close Visual Studio.

After you click Finish, the new project appears on the Project Browser pane. To
close the project at any time, in the Project Browser, right-click the project node
and select Close.

5 If you updated your build command, you can recreate the Polyspace project from the
updated command. To recreate an existing project, on the Project Browser, right-
click the project name and select Update Project.

Note:

• In the Polyspace interface, it is possible that the created project will not show implicit
defines or includes. The configuration tool does include them. However, they are not
visible.

• By default, Polyspace assigns the latest dialect for your compiler. If you have
compilation errors in your project, check the dialect. If it does not apply to you, change
it to a more appropriate one.

• If your build process requires user interaction, you cannot run the build command
from the Polyspace user interface and do an automatic project setup.

 Create Project Automatically

1-9

Related Examples
• “Trace Visual Studio Build”

More About
• “Requirements for Project Creation from Build Systems”
• “Your Compiler Is Not Supported”

1 Project Configuration

1-10

Requirements for Project Creation from Build Systems

For automatic project creation from build systems, your build commands or makefiles
must meet the following requirements:

• Your compiler must be called locally.

If you use a compiler cache such as ccache or a distributed build system such as
distmake, the software cannot trace your build. You must deactivate them.

• Your compiler must perform a clean build.

If your compiler performs only an incremental build, use appropriate options to
build all your source files. For example, if you use gmake, append the -B or -W
makefileName option to force a clean build. For the list of options allowed with the
GNU® make, see make options.

• Your compiler configuration must be available to Polyspace. The compilers currently
supported include the following:

• Visual C++® compiler
• gcc

• clang

• MinGW compiler
• IAR compiler

If your compiler configuration is not available to Polyspace:

• Write a compiler configuration file for your compiler in a specific format. For more
information, see “Your Compiler Is Not Supported”.

• Contact MathWorks Technical Support. For more information, see “Contact
Technical Support”.

• In Linux®, only UNIX® shell (sh) commands must be used. If your build uses advanced
commands such as commands supported only by bash, tcsh or zsh, Polyspace cannot
trace your build.

In Windows®, only DOS commands must be used. If your build uses advanced
commands such as commands supported only by Powershell, Polyspace cannot trace
your build.

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html
http://www.mathworks.com/support/?s_tid=gn_supp

 Requirements for Project Creation from Build Systems

1-11

• Your build command must not use aliases.

The alias command is used in Linux to create an alternate name for commands. If
your build command uses those alternate names, Polyspace cannot recognize them.

• Your build command must be executable completely on the current machine and must
not require privileges of another user.

If your build uses sudo to change user privileges or ssh to remotely login to another
machine, Polyspace cannot trace your build.

• If you use Cygwin™ to build your source code, Polyspace cannot trace your build. You
can either use MinGW to build your source and have the software trace your build, or
do the following:

1 Build your source code using the process that you usually follow. Copy the
command lines that executed during the build to a file.

For instance, on make systems, use the flag -B or -W makefileName to build
your entire source and -n to view the commands. For more information, see make
options.

2 Save the file as a Windows batch file. A batch file is a file that can contain one or
more commands. It has a .bat extension. For more information, see batch files.

3 Run the batch file to make sure your build commands work.

For example, if your batch file is called myBuild.bat, at a DOS command
prompt, enter:

cmd.exe /C myBuild.bat

4 Create a project from the batch file.

If you ran the command in the previous step, at a DOS command prompt, enter:

polyspace-configure cmd.exe /C myBuild.bat

• If your build command uses redirection with the > or | character, the redirection
occurs after Polyspace traces the command. Therefore, Polyspace does not handle the
redirection.

For example, if your command occurs as

command1 | command2

And you enter

http://www.mingw.org/
http://www.gnu.org/software/make/manual/make.html#Options-Summary
http://www.gnu.org/software/make/manual/make.html#Options-Summary
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/batch.mspx?mfr=true

1 Project Configuration

1-12

polyspace-configure command1 | command2

When tracing the build, Polyspace traces the first command only.

Note: Your environment variables are preserved when Polyspace traces your build
command.

See Also
polyspaceConfigure

Related Examples
• “Create Project Automatically”

 Your Compiler Is Not Supported

1-13

Your Compiler Is Not Supported

For automatic project creation from your build system, your compiler configuration must
be available to Polyspace. For information on supported compilers, see “Requirements for
Project Creation from Build Systems”. If your compiler is not supported, you can write
your own compiler configuration file to enable support.

Tip To quickly see if your compiler configuration file works, run the automatic project
setup on a sample build that does not take much time to complete. After you have set up
a project successfully with your compiler configuration file, you can use this file for larger
builds.

1 Copy one of the existing configuration files from matlabroot\polyspace
\configure\compiler_configuration\.

2 Save the file as my_compiler.xml. my_compiler can be any name that helps you
identify the file.

To edit the file, save it outside the installation folder. After you have finished
editing, you must copy the file back to matlabroot\polyspace\configure
\compiler_configuration\.

3 Edit the contents of the file to represent your compiler. Replace the entries between
the XML elements with appropriate content.

The following table lists the XML elements in the file with a description of what the
content within the element represents.

XML Element Content Description Content Example
for GNU C
Compiler

<compiler_names><name> ...

</name><compiler_names>

Name of the compiler
executable. This executable
transforms your .c files
into object files. You
can add several binary
names, each in a separate
<name>...</name> element.
polyspaceConfigure checks

• gcc

• gpp

1 Project Configuration

1-14

XML Element Content Description Content Example
for GNU C
Compiler

for each of the provided names
and uses the compiler name
for which it finds a match.

You must not specify
the linker binary inside
the <name>...</name>
elements.

<include_options><opt> ...

</opt></include_options>

The option that you use with
your compiler to specify
include folders.

-I

<system_include_options>

<opt> ... </opt>

</system_include_options>

The option that you use with
your compiler to specify
system headers.

-isystem

<preinclude_options><opt> ...

</opt></preinclude_options>

The option that you use
with your compiler to force
inclusion of a file in the
compiled object.

-include

<define_options><opt> ...

</opt></define_options>

The option that you use with
your compiler to predefine a
macro.

-D

<undefine_options><opt> ...

</opt></undefine_options>

The option that you use with
your compiler to undo any
previous definition of a macro.

-U

<semantic_options><opt> ...

</opt></semantic_options>

The options that you use to
modify the compiler behavior.
These options specify the
language settings to which the
code must conform.

• -ansi

• -std =C90

• -std =c++11

• -fun signed

-char

 Your Compiler Is Not Supported

1-15

XML Element Content Description Content Example
for GNU C
Compiler

<dialect> ... </dialect> The options that specify
the Polyspace dialect used
by your compiler. For the
complete list of dialects, on the
Configuration pane, select
Target & Compiler.

gnu4.7

<preprocess_options_list>

<opt> ... </opt>

</preprocess_options_list>

The options that specify how
your compiler generates a
preprocessed file.

-E

<src_extensions><ext> ...

</ext></src_extensions>

The file extensions for source
files.

• c

• cpp

• c++

<obj_extensions><ext> ...

</ext></obj_extensions>

The file extensions for object
files.

<precompiled_header_extensions> ...

</precompiled_header_extensions>

The file extensions for
precompiled headers (if
available).

<polyspace_c_extra_options_list>

<opt> ... </opt>

</polyspace_c_extra_options_list>

Additional options that will
be added to your project
configuration

To avoid
compilation
errors due to non-
ANSI® extension
keywords, enter
-D keyword.
For more
information, see
“Preprocessor
definitions (C/C+
+)”.

1 Project Configuration

1-16

XML Element Content Description Content Example
for GNU C
Compiler

<polyspace_cpp_extra_options_list>

<opt> ... </opt>

</polyspace_cpp_extra_options_list>

Additional options that will
be added to your C++ project
configuration

To avoid
compilation
errors due to non-
ANSI extension
keywords, enter
-D keyword.
For more
information, see
“Preprocessor
definitions (C/C+
+)”.

4 After saving the edited XML file to matlabroot\polyspace\configure
\compiler_configuration\, create a project automatically using your build
command. For more information, see:

• “Create Project Automatically”
• “Create Project Automatically at Command Line”
• “Create Project Automatically from MATLAB Command Line”

 Create Project Using Visual Studio Information

1-17

Create Project Using Visual Studio Information

In this section...

“Trace Visual Studio Build” on page 1-17
“Import Visual Studio Project” on page 1-20

Trace Visual Studio Build

To create a Polyspace project, you can trace your Visual Studio build. For Polyspace to
trace your Visual Studio build, you must install both x86 and x64 versions of the Visual
C++ Redistributable for Visual Studio 2012 from the Microsoft website.

1 In the Polyspace interface, select File > New Project.
2 In the Project – Properties window, enter your project information.

a Choose C++ as Project Language.
b Under Project Configuration, select Create from build command and click

Next.

http://www.microsoft.com/en-us/download/details.aspx?id=30679

1 Project Configuration

1-18

3 In the field Specify command used for building your source files, enter the
full path to the Visual Studio executable. For instance, "C:\Program Files
(x86)\Microsoft Visual Studio 10.0\Common7\IDE\VCExpress.exe".

 Create Project Using Visual Studio Information

1-19

4 In the field Specify working directory for running build command, enter C:\.

Click .

This action opens the Visual Studio environment.
5 In the Visual Studio environment, create and build a Visual Studio project.

If you already have a Visual Studio project, open the existing project and build a
clean solution. To build a clean solution in Visual Studio 2012, select BUILD >
Rebuild Solution.

6 After the project builds, close Visual Studio.

Polyspace traces your Visual Studio build and creates a Polyspace project.

The Polyspace project contains the source files from your Visual Studio build and the
relevant Target & Compiler options.

7 If you update your Visual Studio project, to update the corresponding Polyspace
project, on the Project Browser, right-click the project name and select Update
Project.

1 Project Configuration

1-20

Import Visual Studio Project

Note: This feature is will be removed in a future release.

You can directly create a Polyspace project from a Visual Studio project file with
extension .vcproj. The Visual Studio import retrieves the following information from a
Visual Studio project:

• Source files
• Include folders
• Some Target & Compiler options
• Preprocessor Macros

Note: For Visual Studio 2010 or Visual Studio 2012, you cannot directly import your
project.

1 In the Polyspace interface, select Tools > Import Visual Studio Project.
2 In the Import Visual Studio dialog box, specify the Visual Studio project that you

want to use.
3 You can:

• Create new Polyspace project: Enter full path to a new Polyspace project.
• Update existing Polyspace project: The dropdown list contains all projects

currently open in the Project Browser. Select the project you want to update.
4 Click Import.

More About
• “Troubleshooting Project Creation from Visual Studio Build”

 Troubleshooting Project Creation from Visual Studio Build

1-21

Troubleshooting Project Creation from Visual Studio Build

In this section...

“Cannot Create Project from Visual Studio Build” on page 1-21
“Compilation Error After Creating Project from Visual Studio Build” on page 1-21

Cannot Create Project from Visual Studio Build

If you are trying to import a Visual Studio 2010 or Visual Studio 2012 project and
polyspace-configure does not work properly, do the following:

1 Stop the MSBuild.exe process.
2 Set the environment variable MSBUILDDISABLENODEREUSE to 1.
3 Specify MSBuild.exe with the/nodereuse:false option.
4 Restart the Polyspace configuration tool:

polyspace-configure.exe -lang cpp <MSVS path>/msbuild sample.sln

Compilation Error After Creating Project from Visual Studio Build

If you automatically set up your project from a Visual Studio 2010 build, you can face
compilation errors. By default, Polyspace assigns the latest dialect visual11.0 to your
project. This assignment can cause compilation errors. For more information on the
Dialect option, see istian.

To avoid the errors, do one of the following:

• After automatic project setup:

1 Open the project in the user interface. On the Configuration pane, select
Target & Compiler.

2 Check the Dialect. If it is set to visual11.0, change it to visual10.

Note: If you are creating an options file from your Visual Studio 2010 build, check the
-dialect argument. If it is set to visual11.0, change it to visual10.

• Before automatic project setup:

1 Project Configuration

1-22

1 Open the file cl.xml in matlabroot\polyspace\configure
\compiler_configuration\ where matlabroot is your MATLAB installation
folder such as C:\Program Files\R2015a.

2 Change the line

<dialect>visual11.0</dialect>

to

<dialect>visual10</dialect>

3 Add the following lines:

<polyspace_cpp_extra_options_list>

<opt>-OS-target Visual</opt>

</polyspace_cpp_extra_options_list>

4 Create your project or options file. The dialect is already assigned to visual10.

 Add Source Files and Include Folders

1-23

Add Source Files and Include Folders

This example shows how to add source files and include folders to an existing project.

Manage Include File Sequence

You can change the order of include folders to manage the sequence in which include files
are compiled. When multiple include files by the same name exist in different folders, it
is convenient to change the order of include folders instead of reorganizing the contents
of your folders. For a particular include file name, the software includes the file in the
first include folder under Project_Name > Include.

In the following figure, Folder_1 and Folder_2 contain the same include file
include.h. If your source code includes this header file, during compilation, Folder_2/
include.h is included in preference to Folder_1/include.h.

To change the order of include folders:

1 In the Project Browser, expand the Include folder.
2 Select the include folder that you want to move.
3

To move the folder, click either or on the Project Browser toolbar.

Related Examples
• “Specify Results Folder”
• “Create New Project”

1 Project Configuration

1-24

Specify Analysis Options

You can either retain the default analysis options used by the software or change them to
your requirements.

In this section...

“Specify Options in User Interface” on page 1-24
“Specify Options from DOS and UNIX Command Line” on page 1-25
“Specify Options from MATLAB Command Line” on page 1-25

Specify Options in User Interface

To specify analysis options, use the different nodes on the Configuration pane.

For instance:

• To specify the target processor, select Target & Compiler in the Configuration
tree view. Select your processor from the Target processor type drop-down list.

• To check for violation of MISRA C® rules, select Coding Rules. Check the Check
MISRA C Rules box. To check for a subset of rules, select an option from the drop-
down list.

 Specify Analysis Options

1-25

Specify Options from DOS and UNIX Command Line

At the DOS or UNIX command-line, append analysis options to the polyspace-bug-
finder-nodesktop command. For instance:

• To specify the target processor, use the -target option. For instance, to specify the
m68k processor for your source file file.c, use the command:

polyspace-bug-finder-nodesktop -sources "file.c" -lang c -target m68k

• To check for violation of MISRA C rules, use the -misra2 option. For instance,
to check for only the required MISRA C rules on your source file file.c, use the
command:

polyspace-bug-finder-nodesktop -sources "file.c" -misra2 required-rules

Specify Options from MATLAB Command Line

At the MATLAB command-line, enter analysis options and their values as string
arguments to the polyspaceBugFinder function. For instance:

• To specify the target processor, use the -target option. For instance, to specify the
m68k processor for your source file file.c, enter:

polyspaceBugFinder('-sources','file.c','-lang','c','-target','m68k')

• To check for violation of MISRA C rules, use the -misra2 option. For instance, to
check for only the required MISRA C rules on your source file file.c, enter:

polyspaceBugFinder('-sources','file.c','-misra2','required-rules')

See Also
polyspaceBugFinder

Related Examples
• “Save Analysis Options as Project Template”

More About
• “Analysis Options for C”
• “Analysis Options for C++”

1 Project Configuration

1-26

Save Analysis Options as Project Template

This example shows how to save your analysis options for use in other projects. Once
you have configured analysis options for a project, you can save the configuration as
a Project Template. You can use this saved configuration to automatically set up
analysis options for other projects.

• To create a Project Template from an open project:

1 Right-click the configuration that you want to use, and then select Save As
Template.

2 Enter a description for the template, then click Proceed. Save your Template
file.

• When you create a new project, to use a saved template:

1 Under Project configuration, check the Use template box. Click Next.

 Save Analysis Options as Project Template

1-27

1 Project Configuration

1-28

2
Select . Navigate to the template that you saved
earlier, and then click Open. The new template appears in the Custom
templates folder on the Templates browser. Select the template for use.

Related Examples
• “Specify Analysis Options”

More About
• “Analysis Options for C”

 Save Analysis Options as Project Template

1-29

• “Analysis Options for C++”

1 Project Configuration

1-30

Specify External Text Editor

This example shows how to change the default text editor for opening source files from
the Polyspace interface. By default, if you open your source file from the user interface, it
opens on a Code Editor tab. If you prefer editing your source files in an external editor,
you can change this default behavior.

1 Select Tools > Preferences.
2 On the Polyspace Preferences dialog box, select the Editors tab.
3 From the Text editor drop-down list, select External.
4 In the Text editor field, specify the path to your text editor. For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

5 To make sure that your source code opens at the correct line and column in your
text editor, specify command-line arguments for the editor using Polyspace macros,
$FILE, $LINE and $COLUMN. Once you specify the arguments, when you right-click
a check on the Results Summary pane and select Open Editor, your source code
opens at the location of the check.

Polyspace has already specified the command-line arguments for the following
editors:

• Emacs

• Notepad++ — Windows only
• UltraEdit

• VisualStudio

• WordPad — Windows only
• gVim

If you are using one of these editors, select it from the Arguments drop-down list. If
you are using another text editor, select Custom from the drop-down list, and enter
the command-line options in the field provided.

6 To revert back to the built-in editor, on the Editors tab, from the Text editor drop-
down list, select Built In.

For console-based text editors, you must create a terminal. For example, to specify vi:

1 In the Text Editor field, enter /usr/bin/xterm.

 Specify External Text Editor

1-31

2 From the Arguments drop-down list, select Custom.
3 In the field to the right, enter -e /usr/bin/vi $FILE.

1 Project Configuration

1-32

Change Default Font Size

This example shows how to change the default font size in the Polyspace user interface.

1 Select Tools > Preferences.
2 On the Miscellaneous tab:

• To increase the font size of labels on the user interface, select a value for GUI
font size.

For example, to increase the default size by 1 point, select +1.
• To increase the font size of the code on the Source pane and the Code Editor

pane, select a value for Source code font size.
3 Click OK.

When you restart Polyspace, you see the increased font size.

 Define Custom Review Status

1-33

Define Custom Review Status

This example shows how to customize the statuses you assign on the Results Summary
pane.

Define Custom Status

1 Select Tools > Preferences.
2 Select the Review Statuses tab.
3 Enter your new status at the bottom of the dialog box, then click Add.

1 Project Configuration

1-34

The new status appears in the Status list.
4 Click OK to save your changes and close the dialog box.

When reviewing checks, you can select the new status from the Status drop-down list on
the Results Summary pane.

 Define Custom Review Status

1-35

Add Justification to Existing Status

By default, a check is automatically justified if you assign the status, Justified or
No action planned. However, you can change this default setting so that a check is
justified when you assign one of the other existing statuses.

To add justification to existing status Improve:

1 Select Tools > Preferences.
2 Select the Review Statuses tab. For the Improve status, select the check box in the

Justify column. Click OK.

1 Project Configuration

1-36

If you assign the Improve status to a check on the Results Summary pane, the
check gets automatically justified.

 Compilation Errors

1-37

Compilation Errors

During a Polyspace Bug Finder analysis, the software first compiles the project and
looks for coding rule errors. If the files have compilation errors, a message appears in
the Output Summary pane and the offending files are ignored during the later analysis
stages.

Consequently, Bug Finder produces results for all source files that do not have
compilation errors. Files with compilation problems do not appear in the results.

For complete analysis results, fix compilation errors before rerunning the analysis.

1 Project Configuration

1-38

Set Up Multitasking Analysis

This example shows how to prepare for analysis of multitasking code. If your code has
functions that are intended for concurrent execution, you must specify them before
analysis. If these functions operate on a common variable, you must also specify
protection mechanisms for those operations. You can then use Polyspace Bug Finder
to check if the protection mechanisms are well designed. For this example, save the
following code in a file multi.c:

int a;

begin_critical_section();

end_critical_section();

void performTaskCycle(void) {

 begin_critical_section();

 a++;

 end_critical_section();

}

void task1(void) {

 while(1) {

 performTaskCycle();

 }

}

void task2(void) {

 while(1) {

 performTaskCycle();

 }

}

void task3() {

 a=0;

}

Specify Entry Points

If you want task1, task2, and task3 to run concurrently:

• In the user interface, do the following:

1 On the Configuration pane, select the Multitasking node.

 Set Up Multitasking Analysis

1-39

2 For Entry points, specify task1, task2, and task3, each on its own line.
• At the DOS or UNIX command prompt, use the option -entry-points with the

polyspace-bug-finder-nodesktop command. For example:

polyspace-bug-finder-nodesktop -sources multi.c

 -entry-points task1,task2,task3

• At the MATLAB command prompt, specify the following arguments to the
polyspaceBugFinder function.

polyspaceBugFinder('-sources','multi.c',...

 '-entry-points','task1,task2,task3')

Specify Critical Sections

If you do not want the operation a++ from task1 to interrupt the same operation from
task2, you can place the operation inside a critical section. Polyspace requires that a
critical section must lie between two function calls. The functions that begin and end the
critical section must have the prototype void func(void). In this example, to specify
begin_critical_section and end_critical_section as the required functions:

• In the user interface, do the following:

1 On the Configuration pane, select the Multitasking node.
2 For Critical section details, specify begin_critical_section as Starting

procedure and end_critical_section as Ending procedure.
• At the DOS or UNIX command prompt, use the options -critical-section-begin

and -critical-section-end with the polyspace-bug-finder-nodesktop
command. For example:

polyspace-bug-finder-nodesktop -sources multi.c

 -entry-points task1,task2,task3

 -critical-section-begin begin_critical_section:cs1

 -critical-section-end end_critical_section:cs1

• At the MATLAB command prompt, specify the following arguments to the
polyspaceBugFinder function.

polyspaceBugFinder('-sources','multi.c',...

 '-entry-points','task1,task2,task3',...

 '-critical-section-begin','begin_critical_section:cs1',...

 '-critical-section-end','end_critical_section:cs1')

1 Project Configuration

1-40

Specify Temporally Exclusive Tasks

To specify that task3 must not interrupt task1 or task2:

• In the user interface, do the following:

1 On the Configuration pane, select the Multitasking node.
2 For Temporally exclusive tasks, specify task1 task3 and task2 task3,

each on its own line.
• At the DOS or UNIX command prompt, do the following:

1 In a text file, enter the following lines:

task1 task3

task2 task3

2 Save the file as tasklist.txt.
3 At the command prompt, use the option -temporal-exclusions-file with the

polyspace-bug-finder-nodesktop command. For example:

polyspace-bug-finder-nodesktop -sources multi.c

 -entry-points task1,task2,task3

 -critical-section-begin begin_critical_section:cs1

 -critical-section-end end_critical_section:cs1

 -temporal-exclusions-file tasklist.txt

• At the MATLAB command prompt, do the following.

1 In a text file, enter the following lines:

task1 task3

task2 task3

2 Save the file as tasklist.txt.
3 Specify the following arguments to the polyspaceBugFinder function.

polyspaceBugFinder('-sources','multi.c',...

 '-entry-points','task1,task2,task3',...

 '-critical-section-begin','begin_critical_section:cs1',...

 '-critical-section-end','end_critical_section:cs1',...

 '-temporal-exclusions-file','tasklist.txt')

Specify Concurrency Defects to Check

To specify that Polyspace Bug Finder must check for Data race and Deadlock errors:

 Set Up Multitasking Analysis

1-41

• In the user interface, do the following.

1 On the Configuration pane, select the Bug Finder Analysis node.
2 From the Find defects list, select custom.
3 Under the Concurrency node, select Data race and Deadlock.

• At the DOS or UNIX command prompt, use the option -checkers with the
polyspace-bug-finder-nodesktop command. For example:

polyspace-bug-finder-nodesktop -sources multi.c

 -entry-points task1,task2,task3

 -critical-section-begin begin_critical_section:cs1

 -critical-section-end end_critical_section:cs1

 -temporal-exclusions-file tasklist.txt

 -checkers data_race,deadlock

• At the MATLAB command prompt, specify the following arguments to the
polyspaceBugFinder function.

polyspaceBugFinder('-sources','multi.c',...

 '-entry-points','task1,task2,task3',...

 '-critical-section-begin','begin_critical_section:cs1',...

 '-critical-section-end','end_critical_section:cs1',...

 '-temporal-exclusions-file','tasklist.txt',...

 '-checkers','data_race,deadlock')

See Also
“Entry points (C/C++)” | “Critical section details (C/C++)” | “Temporally exclusive tasks
(C/C++)” | “Find defects (C/C++)”

Related Examples
• “Review Concurrency Defects”

More About
• “Concurrency”

1 Project Configuration

1-42

Review Concurrency Defects

This example shows how to review defects that arise only in a multitasking analysis. For
this example, use the results in the demo Bug_Finder_Example.psprj.

To load the demo in your Project Browser, under Help, select Examples >
Bug_Finder_Example.psprj.

Filter Concurrency Defects

1 Right-click any column header and select Category.
2

On the Category column, select the icon.
3 From the filter menu, clear All. Select Concurrency.

Review Data Race Defects

1 Select the first Data race defect.

The Check Details pane lists the variable bad_glob1 that is:

• Shared between multiple tasks and written in at least one of the tasks
• Not protected against concurrent operations

On the Source pane, the variable declaration appears highlighted.
2 To navigate to each operation involving bad_glob1 in the source code, on the Check

Details pane, click the row corresponding to the operation in the table. The lines
with the operations are also highlighted in blue on the Source pane.

a To see if the access is in a critical section, use the Access Protections column.
If one of the accesses is in a critical section, to fix the Data race defect, you can
use the same critical section for the other accesses.

b To see which function contains the access, use the Scope column.
3 Select the second Data race defect.

The Check Details pane lists the variable bad_glob2 involved in the defect. You
can view similar information as the first Data race defect.

However, for this defect, the Access column on the Check Details pane lists why
the operation can be non-atomic.

 Review Concurrency Defects

1-43

Review Locking Defects

1 Select the Deadlock defect.

The Check Details pane lists the sequence of operations that cause the Deadlock.
You can see:

• The function call through which each task involved in the Deadlock enters a
critical section.

• The function call through which each task attempts to enter a critical section that
is already entered by another task.

2 To navigate to each operation in the source code, on the Check Details pane, click
the row corresponding to the operation in the table.

3 Select the Double lock defect.

The Check Details pane lists the sequence of operations that cause the Double
lock. You can see:

• The function call through which a task enters a critical section.
• The function call through which the task attempts to enter the same critical

section.
4 To navigate to each operation in the source code, on the Check Details pane, click

the row corresponding to the operation in the table.
5 Select the Missing unlock defect.

• The Source pane shows the function call that begins a critical section.
• On the Check Details pane, under the Event column, you can see which task

contains the critical section.

See Also
Data race including atomic operations | Data race | Deadlock | Double lock | Double
unlock | Missing lock | Missing unlock

Related Examples
• “Set Up Multitasking Analysis”

1 Project Configuration

1-44

More About
• “Concurrency”

 Annotate Code for Known Defects

1-45

Annotate Code for Known Defects

How to Add Annotations

You can place annotations in your code that inform Polyspace software of known or
acceptable defects. Through the use of these annotations, you can:

• Identify results from previous analyses.
• Categorize reviewed results.
• Highlight defects that are not significant.

You can add annotations in one of the following ways:

• When you are reviewing results in the Polyspace user interface, you can:

1 Enter a Classification, Status and Comment for each defect on the Results
Summary pane.

2 Copy the information you entered and paste it in your source code in a syntax
that Polyspace can read later. For more information, see “Copy and Paste
Annotations”.

• You can directly open your source file in a text editor and enter comments in a
syntax that Polyspace can read later. For more information, see “Syntax for Code
Annotations”.

After you have placed the annotations in your code:

• Polyspace populates the Status, Classification and Comment fields for the defect.
• You or another reviewer can avoid reviewing the defect. You can either ignore the

known defects or filter them from the Results Summary pane. For more information
on filtering, see “Filter and Group Results”.

Syntax for Code Annotations

Polyspace applies the annotations, which are case-insensitive, to the first non-commented
line of C code that follows the annotation.

To apply annotations to a single line of code, use the following syntax:

/* polyspace<Defect:Kind1[,Kind2] : [Classification] : [Status] >

[Additional comments] */

1 Project Configuration

1-46

To apply annotations to a section of code, use the following syntax:

/* polyspace:begin<Defect:Kind1[,Kind1] : [Classification] : [Status] >

[Additional text] */

... Code section ...

/* polyspace:end<Defect:Kind1[,Kind1] : [Classification] : [Status] > */

Square brackets [] indicate optional information.

Replace Replace with

Kind1,Kind2,... Specific defect abbreviations such as MEM_LEAK, FREED_PTR,
etc.

If you want the comment to apply to all defects on the
following line, specify ALL.

Classification • Unset

• High

• Medium

• Low

• Not a defect

Status Action for correcting the defect in your code. Possible values
are:

• Fix

• Improve

• Investigate

• Justified

• No action planned

• Other

Additional text Additional comments.

Syntax Examples:

Defect:

polyspace<Defect:USELESS_WRITE : Low : No Action Planned > Known issue

 Annotate Code for Rule Violations

1-47

Annotate Code for Rule Violations

How to Add Annotations

You can place annotations in your code that inform Polyspace software of known or
acceptable coding rule violations. Through the use of these annotations, you can:

• Identify results from previous analyses.
• Categorize reviewed results.
• Highlight rule violations that are not significant.

Note: Source code annotations do not apply to code comments. Therefore, the following
coding rules cannot be annotated:

• MISRA-C Rules 2.2 and 2.3

• MISRA-C++ Rule 2-7-1
• JSF++ Rules 127 and 133

You can add annotations in one of the following ways:

• When you are reviewing results in the Polyspace user interface, you can:

1 Enter a Classification, Status and Comment for each coding-rule violation on
the Results Summary pane.

2 Copy the information you entered and paste it in your source code in a syntax
that Polyspace can read later. For more information, see “Copy and Paste
Annotations”.

• You can directly open your source file in a text editor and enter comments in a
syntax that Polyspace can read later. For more information, see “Syntax for Code
Annotations”.

After you have placed the annotations in your code:

• Polyspace populates the Status, Classification and Comment fields for the coding-
rule violation.

1 Project Configuration

1-48

• You or another reviewer can avoid reviewing the rule violation. You can either ignore
the known rule violations or filter them from the Results Summary pane. For more
information on filtering, see “Filter and Group Coding Rule Violations”.

Syntax for Code Annotations

Polyspace applies the annotations, which are case-insensitive, to the first non-commented
line of C code that follows the annotation.

To apply annotations to a single line of code, use the following syntax:

/* polyspace<Rule_set:Rule1[,Rule2] : [Classification] : [Status] >

[Additional comments] */

To apply annotations to a section of code, use the following syntax:

/* polyspace:begin<Rule_Set:Rule1[,Rule2] : [Classification] : [Status] >

[Additional text] */

... Code section ...

/* polyspace:end<Rule_Set:Rule1[,Rule2] : [Classification] : [Status] > */

Square brackets [] indicate optional information.

Replace Replace with

Rule_Set • MISRA-C

• MISRA-AC-AGC

• MISRA-CPP

• JSF

• Custom

If you want the comment to apply to all coding rule
violations on the following line, specify ALL.

Rule1,Rule2,... Rule number. For more information, see:

• “MISRA C:2004 Coding Rules”
• “MISRA C++ Coding Rules”
• “JSF C++ Coding Rules”
• “Custom Coding Rules”

 Annotate Code for Rule Violations

1-49

Replace Replace with

Classification • Unset

• High

• Medium

• Low

• Not a defect

Status Action for correcting the coding rule violation. Possible
values are:

• Fix

• Improve

• Investigate

• Justified

• No action planned

• Other

Additional text Additional comments.

Syntax Examples:

MISRA C rule violation:

polyspace<MISRA-C:6.3 : Low : Justified> Known issue

JSF® rule violation:

polyspace<JSF:9 : Low : Justified> Known issue

1 Project Configuration

1-50

Copy and Paste Annotations

This example shows how to place annotations in your code to mark defects that you are
already aware of but do not intend to fix immediately. Using your comments, Polyspace
populates the defect Classification, Status and Comment fields on the Results
Summary pane. After you have placed your comments in your code, you or another
reviewer can avoid reviewing the same defect twice.

1 On the Results Summary pane, assign a Classification, Status and Comment to
a defect or coding rule violation.

a Select the defect or coding rule violation.
b Under the columns, Classification and Status, select options from the drop

down lists.
c Under the column Comment, enter a comment that helps you recognize the

defect easily.
2 Copy the Classification, Status and Comment.

a On the Results Summary pane, right-click the defect or coding rule violation.
b Select Add Pre-Justification to Clipboard. The software copies the

justification string to the clipboard.
3 Paste the Classification, Status and Comment in your source code.

a On the Results Summary pane, right-click the defect or coding rule violation
and select Open Editor.

Your source file opens on the Code Editor pane or an external text editor
depending on your Preferences. The current line is the line containing the
defect.

b Using the paste option in the text editor, paste the justification template string
on the line immediately before the line containing the defect or coding rule
violation.

You can see your Classification, Status and Comment as a code comment in a
format that Polyspace can read later.

 Copy and Paste Annotations

1-51

c Save your source file.
4 Run the analysis again. Open your results.

On the Results Summary pane, the software populates the Classification, Status
and Comment fields for the defect or rule violation. You can either ignore these
findings, or filter them from the Results Summary pane. For more information on
filtering, see “Filter and Group Results”.

1 Project Configuration

1-52

Modify Predefined Target Processor Attributes

You can modify certain attributes of the predefined target processors. If your specific
processor is not listed, you may be able to specify a similar processor and modify its
characteristics to match your processor. The settings that you can modify for each target
are shown in [brackets] in the target processor settings. See “Target processor type (C)”
or “Target processor type (C++)”.

To modify target processor attributes:

1 On the Configuration pane, select the Target & Compiler node.
2 From the Target processor type drop-down list, select the target processor that

you want to use.
3 To the right of the Target processor type field, click Edit.

The Advanced target options dialog box opens.

4 Modify the attributes as required.

 Modify Predefined Target Processor Attributes

1-53

For information on each target option, see “Generic target options (C/C++)”.
5 Click OK to save your changes.

1 Project Configuration

1-54

Specify Generic Target Processors

Define Generic Target

If your application is designed for a custom target processor, you can configure many
basic characteristics of the target by selecting the selecting the mcpu... (Advanced)
target, and specifying the characteristics of your processor.

To configure a generic target:

1 On the Configuration pane, select the Target & Compiler node.
2 From the Target processor type drop-down list, select mcpu... (Advanced).

The Generic target options dialog box opens.

3 In the Enter the target name field, enter a name, for example, MyTarget.
4 Specify the parameters for your target, such as the size of basic types, and alignment

with arrays and structures.

 Specify Generic Target Processors

1-55

For example, when the alignment of basic types within an array or structure is
always 8, it implies that the storage assigned to arrays and structures is strictly
determined by the size of the individual data objects (without fields and end
padding).

Note: For information on each target option, see “Generic target options (C/C++)”.

5 Click Save to save the generic target options and close the dialog box.

Common Generic Targets

The following tables describe the characteristics of common generic targets.

ST7 (Hiware C compiler : HiCross for ST7)

ST7 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 32 32 16/32 unsigned Big
alignment8 16/8 16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 N/A N/A

ST9 (GNU C compiler : gcc9 for ST9)

ST9 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 64 64 16/64 unsigned Big
alignment8 8 8 8 8 8 8 8 8 N/A N/A

Hitachi H8/300, H8/300L

Hitachi
H8/300,
H8/300L

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/32 32 64 32 654 64 16 unsigned Big
alignment8 16 16 16 16 16 16 16 16 N/A N/A

Hitachi H8/300H, H8S, H8C, H8/Tiny

1 Project Configuration

1-56

Hitachi
H8/300H,
H8S,
H8C,
H8/Tiny

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/ 32 32 64 32 64 64 32 unsigned Big
alignment8 16 32/ 16 32/16 32/16 32/16 32/16 32/16 32/16 N/A N/A

View or Modify Existing Generic Targets

To view or modify generic targets that you previously created:

1 On the Configuration pane, select the Target & Compiler node.
2 From the Target processor type drop-down list, select your target, for example,

myTarget.
3 Click Edit. The Generic target options dialog box opens, displaying your target

attributes.

 Specify Generic Target Processors

1-57

4 If required, specify new attributes for your target. Then click Save.
5 Otherwise, click Cancel.

Delete Generic Target

To delete a generic target:

1 On the Configuration pane, select the Target & Compiler node.
2 From the Target processor type drop-down list, select the target that you want to

remove, for example, myTarget.

3 Click Remove. The software removes the target from the list.

1 Project Configuration

1-58

Compile Operating System-Dependent Code

This section describes the options required to compile and analyze code designed to run
on specific operating systems. It contains the following:

In this section...

“Predefined Compilation Flags for C Code” on page 1-58
“Predefined Compilation Flags for C++ Code” on page 1-59
“My Target Application Runs on Linux” on page 1-62
“My Target Application Runs on Solaris” on page 1-62
“My Target Application Runs on Vxworks” on page 1-62
“My Target Application Does Not Run on Linux, vxworks nor Solaris” on page 1-63

Predefined Compilation Flags for C Code

These flags concern the predefined OS-target options: no-predefined-OS, linux,
vxworks, Solaris and visual (-OS-target option).

OS-target Compilation flags -include file and content

no predefined OS -D__STDC__
visual -D__STDC__ -include <product_dir>/cinclude/pst-

visual.h

vxworks -D__STDC__ -

DANSI_PROTOTYPES

-DSTATIC= -

DCONST=const -

D__GNUC__=2 -Dunix -

D__unix -D__unix__ -

Dsparc -D__sparc -

D__sparc__ -Dsun -

D__sun -D__sun__ -

D__svr4__ -D__SVR4

-include <product_dir>/cinclude/pst-

vxworks.h

linux -D__STDC__ -

D__GNUC__=2 -

D__GNUC_MINOR__=6

<product_dir>/cinclude/pst-linux.h

 Compile Operating System-Dependent Code

1-59

OS-target Compilation flags -include file and content

-D__GNUC__=2 -

D__GNUC_MINOR__=6 -

D__ELF__ -Dunix -

D__unix -D__unix__

-Dlinux -D__linux

-D__linux__ -

Di386 -D__i386 -

D__i386__ -Di686 -

D__i686 -D__i686__

-Dpentiumpro -

D__pentiumpro -

D__pentiumpro__

Solaris -D__STDC__ -

D__GNUC__=2 -

D__GNUC_MINOR__=8

-D__GNUC__=2 -

D__GNUC_MINOR__=8 -

D__GCC_NEW_VARARGS__

-Dunix -D__unix -

D__unix__ -Dsparc -

D__sparc -D__sparc__

-Dsun -D__sun -

D__sun__ -D__svr4__

-D__SVR4

No -include file mentioned

Note: The use of the -OS-target option is equivalent to the following alternative
approaches.

• Setting the same -D flags manually, or

• Using the -include option on a copied and modified pst-OS-target.h file

Predefined Compilation Flags for C++ Code

The following table shown for each —OS-target, the list of compilation flags defined by
default, including pre-include header file (see also -include):

1 Project Configuration

1-60

-OS-target Compilation flags -include file Minimum set of options

Linux -

D__SIZE_TYPE__=unsigned

-D__PTRDIFF_TYPE__=int

-D__inline__=inline-

D__signed__=signed -

D__gnuc_va_list=va_list

-D__STL_CLASS_PARTIAL_

SPECIALIZATION -

D__GNU_SOURCE -

D__STDC__ -D__ELF__

-Dunix -D__unix -

D__unix__ -Dlinux -

D__linux -D__linux__

-Di386 -D__i386 -

D__i386__ -Di686 -

D__i686 -D__i686__

-Dpentiumpro -

D__pentiumpro -

D__pentiumpro__

<product_dir>/

cinclude/pst-

linux.h

polyspace-[desktop-]cpp

-OS-target Linux \ -

I <polyspace_install>/

include/ include-linux \ -

I <product_dir>/include/

include-linux/next

Where the Polyspace product
has been installed in the folder
<polyspace_install>

vxWorks -

D__SIZE_TYPE__=unsigned

-D__PTRDIFF_TYPE__=int

-D__inline__=inline-

D__signed__=signed -

D__gnuc_va_list=va_list

-D__STL_CLASS_PARTIAL_

SPECIALIZATION -

DANSI_PROTOTYPES-

DSTATIC=-DCONST=const-

D__STDC-D__GNU_SOURCE

-Dunix -D__unix -

D__unux__ -Dsparc -

D__sparc -D__sparc__ -

Dsun -D__sun -D__sun__-

D__svr4-D__SVR4

<product_dir>/

cinclude/

pstvxworks. h

polyspace-[desktop-]cpp

\ -OS-target vxworks

\ -I /your_path_to/

Vxworks_include_folders

 Compile Operating System-Dependent Code

1-61

-OS-target Compilation flags -include file Minimum set of options

visual /
visual6

-

D__SIZE_TYPE__=unsigned

-D__PTRDIFF_TYPE__=int

-D__STRICT_ANSI__ -

D__inline__=inline-

D__signed__=signed -

D__gnuc_va_list=va_list

-D_POSIX_SOURCE -

D__STL_CLASS_PARTIAL_

SPECIALIZATION

<product_dir>/

cinclude/

pstvisual. h

Solaris -

D__SIZE_TYPE__=unsigned

-D__PTRDIFF_TYPE__=int

-D__inline__=inline-

D__signed__=signed -

D__gnuc_va_list=va_list

-D__STL_CLASS_PARTIAL_

SPECIALIZATION -

D__GNU_SOURCE -D__STDC-

D__GCC_NEW_VARARGS__

-Dunix -D__unix -

D__unux__ -Dsparc -

D__sparc -D__sparc__ -

Dsun -D__sun -D__sun__-

D__svr4-D__SVR4

 If Polyspace runs on a Linux
machine:

polyspace-bug-finder-

no-desktop \ -OS-

target Solaris \ -I /

your_path_to_solaris_include

If Polyspace runs on a Solaris
machine:

polyspace-bug-finder-

no-desktop \ -OS-target

Solaris \ -I /usr/include

no-

predefined-

OS

-

D__SIZE_TYPE__=unsigned

-D__PTRDIFF_TYPE__=int

-D__STRICT_ANSI__ -

D__inline__=inline-

D__signed__=signed -

D__gnuc_va_list=va_list

-D_POSIX_SOURCE -

D__STL_CLASS_PARTIAL_

SPECIALIZATION

 polyspace-bug-finder-

no-desktop \ -OS-

target no-predefined-

OS \ -I /your_path_to/

MyTarget_include_folders

1 Project Configuration

1-62

Note: This list of compiler flags is written in every log file.

My Target Application Runs on Linux

The minimum set of options is as follows:

polyspace-bug-finder-no-desktop \

 -OS-target Linux \

 -I Polyspace_Install/polyspace/verifier/cxx/include/include-libc \

 ...

where the Polyspace product has been installed in the folder Polyspace_Install.

If your target application runs on Linux but you are launching your analysis from
Windows, the minimum set of options is as follows:

polyspace-bug-finder-no-desktop \

 -OS-target Linux \

 -I Polyspace_Install\polyspace\verifier\cxx\include\include-libc \

 ...

where the Polyspace product has been installed in the folder Polyspace_Install.

My Target Application Runs on Solaris

If Polyspace software runs on a Linux machine:

polyspace-bug-finder-no-desktop \

 -OS-target Solaris \

 -I /your_path_to_solaris_include

If Polyspace software runs on a Solaris™ machine:

polyspace-bug-finder-no-desktop \

 -OS-target Solaris \

 -I /usr/include

My Target Application Runs on Vxworks

If Polyspace software runs on either a Solaris or a Linux machine:

 Compile Operating System-Dependent Code

1-63

polyspace-bug-finder-no-desktop \

 -OS-target vxworks \

 -I /your_path_to/Vxworks_include_folders

My Target Application Does Not Run on Linux, vxworks nor Solaris

If Polyspace software does not run on either a Solaris or a Linux machine:

polyspace-bug-finder-no-desktop \

 -OS-target no-predefined-OS \

 -I /your_path_to/MyTarget_include_folders

1 Project Configuration

1-64

Address Alignment

Polyspace software handles address alignment by calculating sizeof and alignments.
This approach takes into account 3 constraints implied by the ANSI standard which
ensure that:

• that global sizeof and offsetof fields are optimum (i.e. as short as possible);
• the alignment of addressable units is respected;
• global alignment is respected.

Consider the example:

struct foo {char a; int b;}

• Each field must be aligned; that is, the starting offset of a field must be a multiple of
its own size1

• So in the example, char a begins at offset 0 and its size is 8 bits. int b cannot begin
at 8 (the end of the previous field) because the starting offset must be a multiple of its
own size (32 bits). Consequently, int b begins at offset=32. The size of the struct
foo before global alignment is therefore 64 bits.

• The global alignment of a structure is the maximum of the individual alignments of
each of its fields;

• In the example, global_alignment = max (alignment char a, alignment
int b) = max (8, 32) = 32

• The size of a struct must be a multiple of its global alignment. In our case, b
begins at 32 and is 32 long, and the size of the struct (64) is a multiple of the
global_alignment (32), so sizeof is not adjusted.

1. except in the cases of “double” and “long” on some targets.

 Ignore or Replace Keywords Before Compilation

1-65

Ignore or Replace Keywords Before Compilation

You can ignore noncompliant keywords, for example, far or 0x, which precede an
absolute address. The template myTpl.pl (listed below) allows you to ignore these
keywords:

1 Save the listed template as C:\Polyspace\myTpl.pl.
2 Select the Configuration > Target & Compiler > Environment Settings pane.
3 To the right of the Command/script to apply to preprocessed files field, click on

the file icon.
4 Use the Open File dialog box to navigate to C:\Polyspace.
5 In the File name field, enter myTpl.pl.
6 Click Open. You see C:\Polyspace\myTpl.pl in the Command/script to apply

to preprocessed files field.

For more information, see “Command/script to apply to preprocessed files (C/C++)”.

Content of myTpl.pl file

#!/usr/bin/perl

##

Post Processing template script

#

##

Usage from Polyspace UI:

#

1) Linux: /usr/bin/perl PostProcessingTemplate.pl

2) Windows: Polyspace_Install\sys\perl\win32\bin\perl.exe <pathtoscript>\

PostProcessingTemplate.pl

#

##

$version = 0.1;

$INFILE = STDIN;

$OUTFILE = STDOUT;

while (<$INFILE>)

{

1 Project Configuration

1-66

 # Remove far keyword

 s/far//;

 # Remove "@ 0xFE1" address constructs

 s/\@\s0x[A-F0-9]*//g;

 # Remove "@0xFE1" address constructs

 # s/\@0x[A-F0-9]*//g;

 # Remove "@ ((unsigned)&LATD*8)+2" type constructs

 s/\@\s\(\(unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

 # Convert current line to lower case

$_ =~ tr/A-Z/a-z/;

 # Print the current processed line

 print $OUTFILE $_;

}

Perl Regular Expression Summary

###

Metacharacter What it matches

###

Single Characters

. Any character except newline

[a-z0-9] Any single character in the set

[^a-z0-9] Any character not in set

\d A digit same as

\D A non digit same as [^0-9]

\w An Alphanumeric (word) character

\W Non Alphanumeric (non-word) character

#

Whitespace Characters

\s Whitespace character

\S Non-whitespace character

\n newline

\r return

\t tab

\f formfeed

\b backspace

#

Anchored Characters

 Ignore or Replace Keywords Before Compilation

1-67

\B word boundary when no inside []

\B non-word boundary

^ Matches to beginning of line

$ Matches to end of line

#

Repeated Characters

x? 0 or 1 occurrence of x

x* 0 or more x's

x+ 1 or more x's

x{m,n} Matches at least m x's and no more than n x's

abc Exactly "abc"

to|be|great One of "to", "be" or "great"

#

Remembered Characters

(string) Used for back referencing see below

\1 or $1 First set of parentheses

\2 or $2 First second of parentheses

\3 or $3 First third of parentheses

##

Back referencing

#

e.g. swap first two words around on a line

red cat -> cat red

s/(\w+) (\w+)/$2 $1/;

#

##

1 Project Configuration

1-68

Analyze Keil or IAR Dialects

Typical embedded control applications frequently read and write port data, set timer
registers and read input captures. To deal with this without using assembly language,
some microprocessor compilers have specified special data types like sfrand sbit.
Typical declarations are:

sfr A0 = 0x80;

sfr A1 = 0x81;

sfr ADCUP = 0xDE;

sbit EI = 0x80;

These declarations reside in header files such as regxx.h for the basic 80Cxxx micro
processor. The definition of sfr in these header files customizes the compiler to the
target processor.

When accessing a register or a port, using sfr data is then simple, but is not part of
standard ANSI C:

int status,P0;

void main (void) {

 ADCUP = 0x08; /* Write data to register */

 A1 = 0xFF; /* Write data to Port */

 status = P0; /* Read data from Port */

 EI = 1; /* Set a bit (enable interrupts) */

}

You can analyze this type of code using the Dialect option . This option allows the
software to support the Keil or IAR C language extensions even if some structures,
keywords, and syntax are not ANSI standard. The following tables summarize what is
supported when analyzing code that is associated with the Keil or IAR dialects.

The following table summarizes the supported Keil C language extensions:

Example: -dialect keil -sfr-types sfr=8

Type/Language Description Example Restrictions

Type bit • An expression to type
bit gives values in
range [0,1].

bit x = 0, y = 1,

 z = 2;

assert(x == 0);

assert(y == 1);

assert(z == 1);

pointers to bits and
arrays of bits are not
allowed

 Analyze Keil or IAR Dialects

1-69

Type/Language Description Example Restrictions

• Converting an
expression in the type,
gives 1 if it is not
equal to 0, else 0. This
behavior is similar to c
++ booltype.

assert(sizeof(bit)

 == sizeof(int));

Type sfr • The -sfr-types
option defines
unsigned types name
and size in bits.

• The behavior of a
variable follows
a variable of type
integral.

• A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

sfr x = 0xf0; //

declaration of

variable x at

address 0xF0

sfr16 y = 0x4EEF;

For this example, options
need to be:

-dialect keil

-sfr-types sfr=8,

 sfr16=16

sfr and sbit types
are only allowed
in declarations of
external global
variables.

Type sbit • Each read/write
access of a variable is
replaced by an access
of the corresponding
sfr variable access.

• Only external global
variables can be
mapped with a sbit
variable.

• Allowed expressions
are integer variables,
cells of array of int
and struct/union
integral fields.

• a variable can also be
declared as extern bit
in an another file.

sfr x = 0xF0;

sbit x1 = x ^ 1; // 1st bit of x

sbit x2 = 0xF0 ^ 2; // 2nd bit of x

sbit x3 = 0xF3; // 3rd bit of x

sbit y0 = t[3] ^ 1;

/* file1.c */

sbit x = P0 ^ 1;

/* file2.c */

extern bit x;

x = 1; // set the 1st bit of P0 to 1

1 Project Configuration

1-70

Type/Language Description Example Restrictions

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var _at_ 0xF0

int x @ 0xFE ;

static const

int y @ 0xA0 = 3;

Absolute variable
locations are ignored
(even if declared with
a #pragma location).

Interrupt
functions

A warnings in the log
file is displayed when an
interrupt function has
been found: "interrupt
handler detected :
<name>" or "task entry
point detected : <name>"

void foo1 (void)

interrupt XX = YY

using 99 {…}

void foo2 (void) _

task_ 99 _priority_

2 {…}

Entry points and
interrupts are not
taken into account as
-entry-points.

Keywords ignored alien, bdata, far, idata, ebdata, huge, sdata, small, compact, large, reentrant.
Defining -D __C51__, keywords large code, data, xdata, pdata and xhuge are
ignored.

The following table summarize the IAR dialect:

Example: -dialect iar -sfr-types sfr=8

Type/Language Description Example Restrictions

Type bit • An expression to type
bit gives values in
range [0,1].

• Converting an
expression in the type,
gives 1 if it is not
equal to 0, else 0. This
behavior is similar to c
++ bool type.

• If initialized with
values 0 or 1, a
variable of type bit is
a simple variable (like
a c++ bool).

• A variable of type
bit is a register bit

union {

 int v;

 struct {

 int z;

 } y;

} s;

void f(void) {

 bit y1 = s.y.z . 2;

 bit x4 = x.4;

 bit x5 = 0xF0 . 5;

 y1 = 1;

 // 2nd bit of s.y.z

 // is set to 1

};

pointers to bits and
arrays of bits are not
allowed

 Analyze Keil or IAR Dialects

1-71

Type/Language Description Example Restrictions

variable (mapped with
a bit or a sfr type)

Type sfr • The -sfr-types
option defines
unsigned types name
and size.

• The behavior of a
variable follows
a variable of type
integral.

• A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

sfr x = 0xf0; //

declaration of

variable x at

address 0xF0

sfr and sbit types
are only allowed
in declarations of
external global
variables.

Individual bit
access

• Individual bit
can be accessed
without using sbit/bit
variables.

• Type is allowed for
integer variables, cells
of integer array, and
struct/union integral
fields.

int x[3], y;

x[2].2 = x[0].3 + y.1;

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var @ 0xF0;

int xx @ 0xFE ;

static const int y \

 @0xA0 = 3;

Absolute variable
locations are ignored
(even if declared with
a #pragma location).

Interrupt
functions

• A warning is
displayed in the log
file when an interrupt
function has been
found: "interrupt
handler detected :
funcname"

interrupt [1] \

 using [99] void \

 foo1(void) { ... };

monitor [3] void \

 foo2(void) { ... };

Entry points and
interrupts are not
taken into account as
-entry-points.

1 Project Configuration

1-72

Type/Language Description Example Restrictions

• A monitor function
is a function that
disables interrupts
while it is executing,
and then restores the
previous interrupt
state at function exit.

Keywords ignored saddr, reentrant, reentrant_idata, non_banked, plm,

bdata, idata, pdata, code, data, xdata, xhuge, interrupt,

__interrupt and __intrinsic

Unnamed struct/
union

• Fields of unions/
structs without a
tag or a name can
be accessed without
naming their parent
struct.

• Option -allow-
unnamed-fields

need to be used to
allow anonymous
struct fields.

• On a conflict
between a field of an
anonymous struct
with other identifiers:

• with a variable
name, field name
is hidden

• with a field
of another
anonymous struct
at different scope,
closer scope is
chosen

union { int x; };

union { int y; struct { int

z; }; } @ 0xF0;

 Analyze Keil or IAR Dialects

1-73

Type/Language Description Example Restrictions

• with a field
of another
anonymous struct
at same scope: an
error "anonymous
struct field name
<name> conflict“ is
displayed in the log
file.

no_init attribute • a global variable
declared with this
attribute is handled
like an external
variable.

• It is handled like a
type qualifier.

no_init int x;

no_init union

{ int y; } @ 0xFE;

The #pragma
no_init does not
affect the code.

The option -sfr-types defines the size of a sfr type for the Keil or IAR dialect.

The syntax for an sfr element in the list is type-name=typesize.

For example:

-sfr-types sfr=8,sfr16=16

defines two sfr types: sfr with a size of 8 bits, and sfr16 with a size of 16-bits. A value
type-name must be given only once. 8, 16 and 32 are the only supported values for type-
size.

Note: As soon as an sfr type is used in the code, you must specify its name and size,
even if it is the keyword sfr.

Note: Many IAR and Keil compilers currently exist that are associated to specific targets.
It is difficult to maintain a complete list of those supported.

1 Project Configuration

1-74

Supported C++ 2011 Standards

Standard Description Supported

C++2011-
N2118 Rvalue references Yes
C++2011-
N2439 Rvalue references for *this Yes
C++2011-
N1610 Initialization of class objects by rvalues Yes
C++2011-
N2756 Non-static data member initializers Yes
C++2011-
N2242 Variadic templates Yes
C++2011-
N2555 Extending variadic template template parameters Yes
C++2011-
N2672 Initializer lists Yes
C++2011-
N1720 Static assertions Yes
C++2011-
N1984 auto-typed variables Yes
C++2011-
N1737 Multi-declarator auto Yes
C++2011-
N2546 Removal of auto as a storage-class specifier Yes
C++2011-
N2541 New function declarator syntax Yes
C++2011-
N2927 New wording for C++0x lambdas Yes
C++2011-
N2343 Declared type of an expression Yes
C++2011-
N3276 decltype and call expressions Yes

 Supported C++ 2011 Standards

1-75

Standard Description Supported

C++2011-
N1757 Right angle brackets Yes
C++2011-
DR226 Default template arguments for function templates Yes
C++2011-
DR339 Solving the SFINAE problem for expressions Yes
C++2011-
N2258 Template aliases Yes
C++2011-
N1987 Extern templates Yes
C++2011-
N2431 Null pointer constant Yes
C++2011-
N2347 Strongly-typed enums Yes
C++2011-
N2764 Forward declarations for enums Yes
C++2011-
N2761 Generalized attributes Yes
C++2011-
N2235 Generalized constant expressions Yes
C++2011-
N2341 Alignment support Yes
C++2011-
N1986 Delegating constructors Yes
C++2011-
N2540 Inheriting constructors Yes
C++2011-
N2437 Explicit conversion operators Yes
C++2011-
N2249 New character types Yes
C++2011-
N2442 Unicode string literals Yes

1 Project Configuration

1-76

Standard Description Supported

C++2011-
N2442 Raw string literals Yes
C++2011-
N2170 Universal character name literals No
C++2011-
N2765 User-defined literals Yes
C++2011-
N2342 Standard Layout Types Not applicable1

C++2011-
N2346 Defaulted and deleted functions Yes
C++2011-
N1791 Extended friend declarations Yes
C++2011-
N2253 Extending sizeof Yes
C++2011-
N2535 Inline namespaces Yes
C++2011-
N2544 Unrestricted unions Yes
C++2011-
N2657 Local and unnamed types as template arguments Yes
C++2011-
N2930 Range-based for Yes
C++2011-
N2928 Explicit virtual overrides Yes
C++2011-
N3050 Allowing move constructors to throw [noexcept] Yes
C++2011-
N3053 Defining move special member functions Yes
C++2011-
N2239 Concurrency - Sequence points Not applicable1

C++2011-
N2427 Concurrency - Atomic operations No

 Supported C++ 2011 Standards

1-77

Standard Description Supported

C++2011-
N2748 Concurrency - Strong Compare and Exchange No
C++2011-
N2752 Concurrency - Bidirectional Fences No
C++2011-
N2429 Concurrency - Memory model Not applicable1

C++2011-
N2664

Concurrency - Data-dependency ordering: atomics and
memory model No

C++2011-
N2179 Concurrency - Propagating exceptions No
C++2011-
N2440 Concurrency - Abandoning a process and at_quick_exit Yes
C++2011-
N2547 Concurrency - Allow atomics use in signal handlers No
C++2011-
N2659 Concurrency - Thread-local storage No
C++2011-
N2660

Concurrency - Dynamic initialization and destruction
with concurrency No

C++2011-
N2340 __func__ predefined identifier Yes
C++2011-
N1653 C99 preprocessor Yes
C++2011-
N1811 long long Yes
C++2011-
N1988 Extended integral types Not applicable1

1 This C++11 requirement is not a factor in a Polyspace analysis.

See Also
“C++11 Extensions (C++)”

1 Project Configuration

1-78

Gather Compilation Options Efficiently

The code is often tuned for the target (as discussed in “Analyze Keil or IAR Dialects”
on page 1-68). Rather than applying minor changes to the code, create a single
polyspace.h file which contains target specific functions and options. The -include
option can then be used to force the inclusion of the polyspace.h file in the source files.

Where there are missing prototypes or conflicts in variable definition, writing the
expected definition or prototype within such a header file will yield several advantages.

Direct benefits:

• The error detection is much faster since it will be detected during compilation rather
than in the link or subsequent phases.

• The position of the error will be identified more precisely.
• Original source files will not need to be modified.

Indirect benefits:

• The file is automatically included as the very first file in the original .c files.
• The file can contain much more powerful macro definitions than simple -D options.
• The file is reusable for other projects developed under the same environment.

Example

This is an example of a file that can be used with the -include option.

// The file may include (say) a standard include file implicitly

// included by the cross compiler

#include <stdlib.h>

#include "another_file.h"

// Generic definitions, reusable from one project to another

#define far

#define at(x)

// A prototype may be positioned here to aid in the solution of

// a link phase conflict between

// declaration and definition. This will allow detection of the

// same error at compilation time instead of at link time.

 Gather Compilation Options Efficiently

1-79

// Leads to:

// - earlier detection

// - precise localisation of conflict at compilation time

void f(int);

// The same also applies to variables.

extern int x;

// Standard library stubs can be avoided,

// and OS standard prototypes redefined.

#define POLYSPACE_NO_STANDARD_STUBS // use this flag to prevent the

 //automatic stubbing of std functions

#define __polyspace_no_sscanf

#define __polyspace_no_fgetc

void sscanf(int, char, char, char, char, char);

void fgetc(void);

1 Project Configuration

1-80

Specify Constraints

This example shows how to specify constraints on variables in your code. Polyspace uses
the code that you provide to make assumptions about variable ranges, allowed buffer size
for pointers, and other items. However, sometimes the assumptions are broader than
what you expect because:

• You have not provided the complete code. For example, you have not provided some of
the function definitions.

• Some of the information about variables is available only at run-time. For example,
some variables in your code obtain values from the user at run time.

Because of these broad assumptions, Polyspace can sometimes produce false positives.

To reduce the number of such false positives, you can specify additional constraints
on variables using a Data Range Specification or DRS template. After you create
a template, you can save the template as an XML file and use it for subsequent
verifications. If your source code changes, you can update the previous template. You do
not have to create another template.

In this section...

“Create Constraint Template” on page 1-80
“Update Existing Template” on page 1-82

Create Constraint Template

1 On the Configuration pane, select Inputs & Stubbing.
2 To the right of Variable/function range setup, click the Edit button.

The Polyspace DRS Configuration dialog box opens.

 Specify Constraints

1-81

3 Click Generate. The software compiles your project and creates a template.

The template contains a list of all variables on which you can provide constraints.
4 Specify your constraints and save the template as an XML file. For more

information, see “Constraints”.
5 Click OK.

You see the full path to the template XML file in the Variable/function range
setup field. If you run a verification, Polyspace uses this template for extracting
variable constraints.

Note: Specifying constraints outside your code in this way allows more precise
verification. However, because the constraints are outside your code, you must use the
code within the specified constraints. Otherwise, the verification results might not apply.
For example, if you use function inputs outside your specified range, a run-time error can
occur on an operation even though checks on the operation are green.

To specify constraints in your code, you can use:

• Appropriate error handling tests in your code.
Polyspace checks if the errors can actually occur. If they do not occur, the test blocks
appear as Unreachable code.

• The assert macro. For example, to constrain a variable var in the range [0,10], you
can use assert(var >= 0 && var <=10);.

http://www.cplusplus.com/reference/cassert/assert/

1 Project Configuration

1-82

Polyspace checks your assert statements to see if the condition can be false.
Following the assert statement, Polyspace considers that the assert condition is

true. Therefore, if you use appropriate assert statements, for the remaining code in
the same scope, your variables are constrained. For examples, see User assertion.

Update Existing Template

1 On the Configuration pane, select Inputs & Stubbing.
2 Open the existing template in one of the following ways:

• Enter the path to the template XML file in the Variable/function range setup
field. Click Edit.

•
Click Edit. In the Polyspace DRS Configuration dialog box, click the icon, to
navigate to your template file.

3 Click Update.

a Variables that are no longer present in your source code appear under the Non
Applicable node. To remove an entry under the Non Applicable node or the
node itself, right-click and select Remove This Node.

b Specify your new constraints for any of the other variables.

See Also
“Variable/function range setup (C/C++)”

Related Examples
• “Constrain Global Variables”

 Constraints

1-83

Constraints

The Polyspace DRS Configuration interface allows you to specify constraints for:

• Global Variables.
• User-defined Functions.
• Stubbed Functions.

For more information, see “Specify Constraints”.

The following table lists the constraints that can be specified through this interface.

Column Settings

Name Displays the list of variables and functions in your Project for
which you can specify data ranges.

This Column displays three expandable menu items:

• Globals – Displays global variables in the project.
• User defined functions – Displays user-defined functions in

the project. Expand a function name to see its inputs.
• Stubbed functions – Displays a list of stub functions in the

project. Expand a function name to see the inputs and return
values.

File Displays the name of the source file containing the variable or
function.

Attributes Displays information about the variable or function.

For example, static variables display static.
Data Type Displays the variable type.
Main Generator
Called

Applicable only for user-defined functions.

Specifies whether the main generator calls the function:

• MAIN GENERATOR – Main generator may call this function,
depending on the value of the -functions-called-in-loop
(C) or -main-generator-calls (C++) parameter.

• NO – Main generator will not call this function.

1 Project Configuration

1-84

Column Settings

• YES – Main generator will call this function.
Init Mode Specifies how the software assigns a range to the variable:

• MAIN GENERATOR – Variable range is assigned depending
on the settings of the main generator options -variables-
written-before-loop and -no-def-init-glob.
(For C++, the options are -main-generator-writes-
variables, and -no-def-init-glob.)

• IGNORE – Variable is not assigned to any range, even if a range
is specified.

• INIT – Variable is assigned to the specified range only at
initialization, and keeps the range until first write.

• PERMANENT – Variable is permanently assigned to the specified
range. If the variable is assigned outside this range during the
program, no warning is provided. Use the globalassert mode
if you need a warning.

User-defined functions support only INIT mode.

Stub functions support only PERMANENT mode.

For C verifications, global pointers support MAIN GENERATOR,
IGNORE, or INIT mode.

• MAIN GENERATOR – Pointer follows the options of the main
generator.

• IGNORE – Pointer is not initialized
• INIT – Specify if the pointer is NULL, and how the pointed

object is allocated (Initialize Pointer and Init Allocated
options).

 Constraints

1-85

Column Settings

Init Range Specifies the minimum and maximum values for the variable.

You can use the keywords min and max to denote the minimum
and maximum values of the variable type. For example, for
the type long, min and max correspond to -2^31 and 2^31-1
respectively.

You can also use hexadecimal values. For example: 0x12..0x100

For enum variables, you cannot specify ranges directly using the
enumerator constants. Instead use the values represented by the
constants.

For enum variables, you can also use the keywords enum_min and
enum_max to denote the minimum and maximum values that the
variable can take. For example, for an enum variable of the type
defined below, enum_min is 0 and enum_max is 5:

enum week{ sunday, monday=0, tuesday,

 wednesday, thursday, friday, saturday};

Initialize Pointer Applicable only to pointers. Enabled only when you specify Init
Mode:INIT.

Specifies whether the pointer should be NULL:

• May-be NULL – The pointer could potentially be a NULL
pointer (or not).

• Not Null – The pointer is never initialized as a null pointer.
• Null – The pointer is initialized as NULL.

Note: Not applicable for C++ projects.

1 Project Configuration

1-86

Column Settings

Init Allocated Applicable only to pointers. Enabled only when you specify Init
Mode:INIT.

Specifies how the pointed object is allocated:

• MAIN GENERATOR – The pointed object is allocated by the main
generator.

• None – Pointed object is not written.
• SINGLE – Write the pointed object or the first element of an

array. (This setting is useful for stubbed function parameters.)
• MULTI – All objects (or array elements) are initialized.

See .

Note: Not applicable for C++ projects.
Allocated
Objects

Applicable only to pointers.

Specifies how many objects are pointed to by the pointer (the
pointed object is considered as an array).

Note: The Init Allocated parameter specifies how many allocated
objects are actually initialized. See .

Note: Not applicable for C++ projects.
Global Assert Specifies whether to perform an assert check on the variable at

global initialization, and after each assignment.
Global Assert
Range

Specifies the minimum and maximum values for the range you
want to check.

Comment Remarks that you enter, for example, justification for your DRS
values.

 Storage of Polyspace Preferences

1-87

Storage of Polyspace Preferences

The software stores the settings that you specify through the Polyspace Preferences
dialog box in the following file:

• Windows: $Drive\Users\$User\AppData\Roaming\MathWorks \MATLAB
\$Release\Polyspace\polyspace.prf

• Linux: /home/$User/.matlab/$Release/Polyspace/polyspace.prf

Here, $Drive is the drive where the operating system files are located such as C:, $User
is the username and $Release is the release number.

The following file stores the location of all installed Polyspace products across various
releases:

• Windows: $Drive\Users\$User\AppData\Roaming\MathWorks
\MATLAB \AppData\Roaming\MathWorks\MATLAB \polyspace_shared

\polyspace_products.prf

• Linux : /home/$User/.matlab/polyspace_shared/polyspace_products.prf

2

Coding Rule Sets and Concepts

• “Rule Checking” on page 2-2
• “Polyspace MISRA C 2004 and MISRA AC AGC Checkers” on page 2-4
• “Software Quality Objective Subsets (C:2004)” on page 2-5
• “Software Quality Objective Subsets (AC AGC)” on page 2-10
• “MISRA C:2004 Coding Rules” on page 2-14
• “Polyspace MISRA C:2012 Checker” on page 2-53
• “Software Quality Objective Subsets (C:2012)” on page 2-54
• “Unsupported MISRA C:2012 Guidelines” on page 2-59
• “Polyspace MISRA C++ Checker” on page 2-61
• “Software Quality Objective Subsets (C++)” on page 2-62
• “MISRA C++ Coding Rules” on page 2-69
• “Polyspace JSF C++ Checker” on page 2-94
• “JSF C++ Coding Rules” on page 2-95

2 Coding Rule Sets and Concepts

2-2

Rule Checking

Polyspace Coding Rule Checker

Polyspace software allows you to analyze code to demonstrate compliance with
established C and C++ coding standards:

• MISRA C 2004
• MISRA C 2012
• MISRA® C++:2008
• JSF++:2005

Applying coding rules can reduce the number of defects and improve the quality of your
code.

While creating a project, you specify both the coding standard, and which rules to
enforce. Polyspace software performs rule checking before and during the analysis.
Violations appear in the Results Summary pane.

If any source files in the analysis do not compile, coding rules checking will be
incomplete. The coding rules checker results:

• May not contain full results for files that did not compile
• May not contain full results for the files that did compile as some rules are checked

only after compilation is complete

Note: When you enable the Compilation Assistant and coding rules checking, the
software does not report coding rule violations if there are compilation errors.

Differences Between Bug Finder and Code Prover

Coding rule checker results can differ between Polyspace Bug Finder and Polyspace
Code Prover. The rule checking engines are identical in Bug Finder and Code Prover,
but the context in which the checkers execute is not the same. If a project is launched
from Bug Finder and Code Prover with the same source files and same configuration
options, the coding rule results can differ. For example, the main generator used in Code
Prover activates global variables, which causes the rule checkers to identify such global

 Rule Checking

2-3

variables as initialized. The Bug Finder does not have a main generator, so handles the
initialization of the global variables differently. Another difference is how violations are
reported. The coding rules violations found in header files are not reported to the user in
Bug Finder, but these violations are visible in Code Prover.

This difference can occur in MISRA C:2004, MISRA C:2012, MISRA C++, and JSF++. See
the Polyspace Specification column or the Description for each rule.

Even though there are differences between rules checkers in Bug Finder and Code
Prover, both reports are valid in their own context. For quick coding rules checking, use
Polyspace Bug Finder.

2 Coding Rule Sets and Concepts

2-4

Polyspace MISRA C 2004 and MISRA AC AGC Checkers

The Polyspace MISRA C:2004 checker helps you comply with the MISRA C 2004 coding
standard.2

When MISRA C rules are violated, the MISRA C checker enables Polyspace software to
provide messages with information about the rule violations. Most messages are reported
during the compile phase of an analysis.

The MISRA C checker can check nearly all of the 142 MISRA C:2004 rules.

The MISRA AC AGC checker checks rules from the OBL (obligatory) and REC
(recommended) categories specified by MISRA AC AGC Guidelines for the Application of
MISRA-C:2004 in the Context of Automatic Code Generation.

There are subsets of MISRA coding rules that can have a direct or indirect impact on the
selectivity (reliability percentage) of your results. When you set up rule checking, you can
select these subsets directly. These subsets are defined in:

• “Software Quality Objective Subsets (C:2004)” on page 2-5
• “Software Quality Objective Subsets (AC AGC)” on page 2-10

Note: The Polyspace MISRA checker is based on MISRA C:2004, which also incorporates
MISRA C Technical Corrigendum (http://www.misra-c.com).

2. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA
Consortium.

http://www.misra-c.com/

 Software Quality Objective Subsets (C:2004)

2-5

Software Quality Objective Subsets (C:2004)

In this section...

“Rules in SQO-Subset1” on page 2-5
“Rules in SQO-Subset2” on page 2-6

Rules in SQO-Subset1

In Polyspace Code Prover, the following set of coding rules will typically reduce the
number of unproven results.

Rule number Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an integral
type.

12.12 The underlying bit representations of floating-point values shall not
be used.

13.3 Floating-point expressions shall not be tested for equality or
inequality.

13.4 The controlling expression of a for statement shall not contain any
objects of floating type.

13.5 The three expressions of a for statement shall be concerned only with
loop control.

14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.

2 Coding Rule Sets and Concepts

2-6

Rule number Description

16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.7 A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed
object.

17.3 >, >=, <, <= shall not be applied to pointer types except where they
point to the same array.

17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of

pointer indirection.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
20.4 Dynamic heap memory allocation shall not be used.

Note: Polyspace software does not check MISRA rule 18.3.

Rules in SQO-Subset2

Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding
rules enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule number Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

6.3 typedefs that indicate size and signedness should be used in place of
the basic types

8.7 Objects shall be defined at block scope if they are only accessed from
within a single function

 Software Quality Objective Subsets (C:2004)

2-7

Rule number Description

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

9.2 Braces shall be used to indicate and match the structure in the
nonzero initialization of arrays and structures

9.3 In an enumerator list, the = construct shall not be used to explicitly
initialize members other than the first, unless all items are explicitly
initialized

10.3 The value of a complex expression of integer type may only be cast to
a type that is narrower and of the same signedness as the underlying
type of the expression

10.5 Bitwise operations shall not be performed on signed integer types
11.1 Conversion shall not be performed between a pointer to a function

and any type other than an integral type
11.2 Conversion shall not be performed between a pointer to an object and

any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

11.5 Type casting from any type to or from pointers shall not be used
12.1 Limited dependence should be placed on C's operator precedence

rules in expressions
12.2 The value of an expression shall be the same under any order of

evaluation that the standard permits
12.5 The operands of a logical && or || shall be primary-expressions
12.6 Operands of logical operators (&&, || and !) should be effectively

Boolean. Expression that are effectively Boolean should not be used
as operands to operators other than (&&, || or !)

12.9 The unary minus operator shall not be applied to an expression
whose underlying type is unsigned

12.10 The comma operator shall not be used

2 Coding Rule Sets and Concepts

2-8

Rule number Description

12.12 The underlying bit representations of floating-point values shall not
be used.

13.1 Assignment operators shall not be used in expressions that yield
Boolean values

13.2 Tests of a value against zero should be made explicit, unless the
operand is effectively Boolean

13.3 Floating-point expressions shall not be tested for equality or
inequality.

13.4 The controlling expression of a for statement shall not contain any
objects of floating type.

13.5 The three expressions of a for statement shall be concerned only with
loop control.

13.6 Numeric variables being used within a “for” loop for iteration
counting should not be modified in the body of the loop

14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for

statement shall be a compound statement
14.10 All if else if constructs should contain a final else clause
15.3 The final clause of a switch statement shall be the default clause
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function

prototype declaration
16.7 A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed
object.

16.8 All exit paths from a function with non-void return type shall have an
explicit return statement with an expression

16.9 A function identifier shall only be used with either a preceding &, or
with a parenthesized parameter list, which may be empty

 Software Quality Objective Subsets (C:2004)

2-9

Rule number Description

17.3 >, >=, <, <= shall not be applied to pointer types except where they
point to the same array.

17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of

pointer indirection.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
19.4 C macros shall only expand to a braced initializer, a constant, a

parenthesized expression, a type qualifier, a storage class specifier, or
a do-while-zero construct

19.9 Arguments to a function-like macro shall not contain tokens that look
like preprocessing directives

19.10 In the definition of a function-like macro each instance of a
parameter shall be enclosed in parentheses unless it is used as the
operand of # or ##

19.11 All macro identifiers in preprocessor directives shall be defined before
use, except in #ifdef and #ifndef preprocessor directives and the
defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.
20.4 Dynamic heap memory allocation shall not be used.

Note: Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my_system_library_call(int in) {assert (in>1); if random \

return -1 else return 0; }

2 Coding Rule Sets and Concepts

2-10

Software Quality Objective Subsets (AC AGC)

In this section...

“Rules in SQO-Subset1” on page 2-10
“Rules in SQO-Subset2” on page 2-11

Rules in SQO-Subset1

In Polyspace Code Prover, the following set of coding rules will typically reduce the
number of unproven results.

Rule number Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

12.12 The underlying bit representations of floating-point values shall not
be used.

14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.

 Software Quality Objective Subsets (AC AGC)

2-11

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

Rules in SQO-Subset2

Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding
rules enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule number Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

6.3 typedefs that indicate size and signedness should be used in place of
the basic types

8.7 Objects shall be defined at block scope if they are only accessed from
within a single function

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

9.3 In an enumerator list, the = construct shall not be used to explicitly
initialize members other than the first, unless all items are explicitly
initialized

11.1 Conversion shall not be performed between a pointer to a function
and any type other than an integral type

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

11.5 Type casting from any type to or from pointers shall not be used
12.2 The value of an expression shall be the same under any order of

evaluation that the standard permits

2 Coding Rule Sets and Concepts

2-12

Rule number Description

12.9 The unary minus operator shall not be applied to an expression
whose underlying type is unsigned

12.10 The comma operator shall not be used
12.12 The underlying bit representations of floating-point values shall not

be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function

prototype declaration
16.8 All exit paths from a function with non-void return type shall have an

explicit return statement with an expression
16.9 A function identifier shall only be used with either a preceding &, or

with a parenthesized parameter list, which may be empty
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.
19.9 Arguments to a function-like macro shall not contain tokens that look

like preprocessing directives
19.10 In the definition of a function-like macro each instance of a

parameter shall be enclosed in parentheses unless it is used as the
operand of # or ##

19.11 All macro identifiers in preprocessor directives shall be defined before
use, except in #ifdef and #ifndef preprocessor directives and the
defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.

 Software Quality Objective Subsets (AC AGC)

2-13

Note: Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my_system_library_call(int in) {assert (in>1); if random \

return -1 else return 0; }

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

2 Coding Rule Sets and Concepts

2-14

MISRA C:2004 Coding Rules
In this section...

“Supported MISRA C:2004 Rules” on page 2-14
“Unsupported MISRA C:2004 Rules” on page 2-50

Supported MISRA C:2004 Rules

The following tables list MISRA C:2004 coding rules that the Polyspace coding rules
checker supports. Details regarding how the software checks individual rules and any
limitations on the scope of checking are described in the “Polyspace Specification”
column.

Note: The Polyspace coding rules checker:

• Supports MISRA-C:2004 Technical Corrigendum 1 for rules 4.1, 5.1, 5.3, 6.1, 6.3, 7.1,
9.2, 10.5, 12.6, 13.5, and 15.0.

• Checks rules specified by MISRA AC AGC Guidelines for the Application of MISRA-
C:2004 in the Context of Automatic Code Generation.

The software reports most violations during the compile phase of an analysis. However,
the software detects violations of rules 9.1 (Non-initialized variable), 12.11 (one
of the overflow checks) using -scalar-overflows-checks signed-and-unsigned),
13.7 (dead code), 14.1 (dead code), 16.2 and 21.1 during code analysis, and reports these
violations as run-time errors.

Note: Some violations of rules 13.7 and 14.1 are reported during the compile phase of
analysis.

• “Environment” on page 2-15
• “Language Extensions” on page 2-18
• “Documentation” on page 2-18
• “Character Sets” on page 2-19
• “Identifiers” on page 2-19

 MISRA C:2004 Coding Rules

2-15

• “Types” on page 2-20
• “Constants” on page 2-21
• “Declarations and Definitions” on page 2-22
• “Initialization” on page 2-24
• “Arithmetic Type Conversion” on page 2-25
• “Pointer Type Conversion” on page 2-29
• “Expressions” on page 2-30
• “Control Statement Expressions” on page 2-34
• “Control Flow” on page 2-37
• “Switch Statements” on page 2-39
• “Functions” on page 2-40
• “Pointers and Arrays” on page 2-42
• “Structures and Unions” on page 2-43
• “Preprocessing Directives” on page 2-43
• “Standard Libraries” on page 2-47
• “Runtime Failures” on page 2-50

Environment

N. MISRA Definition Messages in report file Polyspace Specification

1.1 All code shall conform
to ISO® 9899:1990
“Programming languages -
C”, amended and corrected
by ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
COR2:1996.

The text All code shall
conform to ISO 9899:1990
Programming languages C,
amended and corrected by
ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
COR2:1996 precedes each of
the following messages:

• ANSI C does not allow
‘#include_next'

• ANSI C does not allow
macros with variable
arguments list

All the supported extensions
lead to a violation of this
MISRA rule. Standard
compilation error messages
do not lead to a violation of
this MISRA rule and remain
unchanged.

2 Coding Rule Sets and Concepts

2-16

N. MISRA Definition Messages in report file Polyspace Specification

• ANSI C does not allow
‘#assert’

• ANSI C does not allow
'#unassert'

• ANSI C does not allow
testing assertions

• ANSI C does not allow
'#ident'

• ANSI C does not allow
'#sccs'

• text following '#else'
violates ANSI standard.

• text following '#endif'
violates ANSI standard.

• text following '#else' or
'#endif' violates ANSI
standard.

 MISRA C:2004 Coding Rules

2-17

N. MISRA Definition Messages in report file Polyspace Specification

1.1
(cont.)

 The text All code shall
conform to ISO 9899:1990
Programming languages C,
amended and corrected by
ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
COR2:1996 precedes each of
the following messages:

• ANSI C90 forbids 'long
long int' type.

• ANSI C90 forbids 'long
double' type.

• ANSI C90 forbids long
long integer constants.

• Keyword 'inline' should
not be used.

• Array of zero size should
not be used.

• Integer constant does not
fit within unsigned long
int.

• Integer constant does not
fit within long int.

• Too many nesting levels
of #includes: N1. The
limit is N0.

• Too many macro
definitions: N1. The limit
is N0.

• Too many nesting levels
for control flow: N1. The
limit is N0.

2 Coding Rule Sets and Concepts

2-18

N. MISRA Definition Messages in report file Polyspace Specification

• Too many enumeration
constants: N1. The limit
is N0.

Language Extensions

N. MISRA Definition Messages in report file Polyspace Specification

2.1 Assembly language shall be
encapsulated and isolated.

Assembly language shall be
encapsulated and isolated.

No warnings if code is
encapsulated in asm
functions or in asm pragma
(only warning is given on
asm statements even if it is
encapsulated by a MACRO).

2.2 Source code shall only use /*
*/ style comments

C++ comments shall not be
used.

C++ comments are handled
as comments but lead to a
violation of this MISRA rule

Note: This rule cannot be
annotated in the source code.

2.3 The character sequence /*
shall not be used within a
comment

The character sequence /*
shall not appear within a
comment.

This rule violation is also
raised when the character
sequence /* inside a C++
comment.

Note: This rule cannot be
annotated in the source code.

Documentation

Rule MISRA Definition Messages in report file Polyspace Specification

3.4 All uses of the #pragma
directive shall be documented
and explained.

All uses of the #pragma
directive shall be
documented and explained.

To check this rule, the option
-allowed-pragmas must be
set to the list of pragmas that
are allowed in source files.
Warning if a pragma that
does not belong to the list is
found.

 MISRA C:2004 Coding Rules

2-19

Character Sets

N. MISRA Definition Messages in report file Polyspace Specification

4.1 Only those escape sequences
which are defined in the ISO
C standard shall be used.

\<character> is not an ISO
C escape sequence
Only those escape sequences
which are defined in the ISO
C standard shall be used.

4.2 Trigraphs shall not be used. Trigraphs shall not be used. Trigraphs are handled and
converted to the equivalent
character but lead to a
violation of the MISRA rule

Identifiers

N. MISRA Definition Messages in report file Polyspace Specification

5.1 Identifiers (internal and
external) shall not rely on the
significance of more than 31
characters

Identifier 'XX' should not
rely on the significance of
more than 31 characters.

All identifiers (global, static
and local) are checked.

5.2 Identifiers in an inner scope
shall not use the same name
as an identifier in an outer
scope, and therefore hide that
identifier.

• Local declaration of XX is
hiding another identifier.

• Declaration of parameter
XX is hiding another
identifier.

Assumes that rule 8.1 is not
violated.

5.3 A typedef name shall be a
unique identifier

{typedef name}'%s' should
not be reused. (already used
as {typedef name} at %s:%d)

Warning when a typedef
name is reused as another
identifier name.

5.4 A tag name shall be a unique
identifier

{tag name}'%s' should not be
reused. (already used as {tag
name} at %s:%d)

Warning when a tag name is
reused as another identifier
name

5.5 No object or function
identifier with a static
storage duration should be
reused.

{static identifier/parameter
name}’%s’ should not be
reused. (already used as
{static identifier/parameter
name} with static storage
duration at %s:%d)

Warning when a static
name is reused as another
identifier name

Bug Finder and Code Prover
check this coding rule

2 Coding Rule Sets and Concepts

2-20

N. MISRA Definition Messages in report file Polyspace Specification

differently. The analyses can
produce different results.

5.6 No identifier in one name
space should have the same
spelling as an identifier in
another name space, with the
exception of structure and
union member names.

{member name}'%s' should
not be reused. (already used
as {member name} at %s:%d)

Warning when an idf in
a namespace is reused in
another namespace

5.7 No identifier name should be
reused.

{identifier}'%s' should not
be reused. (already used as
{identifier} at %s:%d)

No violation reported when:

• Different functions have
parameters with the same
name

• Different functions have
local variables with the
same name

• A function has a local
variable that has the same
name as a parameter of
another function

Types

N. MISRA Definition Messages in report file Polyspace Specification

6.1 The plain char type shall be
used only for the storage and
use of character values

Only permissible operators
on plain chars are '=', '==' or
'!=' operators, explicit casts
to integral types and '?' (for
the 2nd and 3rd operands)

Warning when a plain char is
used with an operator other
than =, ==, !=, explicit casts
to integral types, or as the
second or third operands of
the ? operator.

6.2 Signed and unsigned char
type shall be used only for the
storage and use of numeric
values.

• Value of type plain char
is implicitly converted to
signed char.

• Value of type plain char
is implicitly converted to
unsigned char.

Warning if value of type plain
char is implicitly converted to
value of type signed char or
unsigned char.

 MISRA C:2004 Coding Rules

2-21

N. MISRA Definition Messages in report file Polyspace Specification

• Value of type signed char
is implicitly converted to
plain char.

• Value of type unsigned
char is implicitly
converted to plain char.

6.3 typedefs that indicate size
and signedness should be
used in place of the basic
types

typedefs that indicate size
and signedness should be
used in place of the basic
types.

No warning is given in
typedef definition.

6.4 Bit fields shall only be
defined to be of type unsigned
int or signed int.

Bit fields shall only be
defined to be of type
unsigned int or signed int.

6.5 Bit fields of type signed int
shall be at least 2 bits long.

Bit fields of type signed int
shall be at least 2 bits long.

No warning on anonymous
signed int bitfields of width
0 - Extended to all signed
bitfields of size <= 1 (if Rule
6.4 is violated).

Constants

N. MISRA Definition Messages in report file Polyspace Specification

7.1 Octal constants (other
than zero) and octal escape
sequences shall not be used.

• Octal constants other
than zero and octal
escape sequences shall
not be used.

• Octal constants (other
than zero) should not be
used.

• Octal escape sequences
should not be used.

2 Coding Rule Sets and Concepts

2-22

Declarations and Definitions

N. MISRA Definition Messages in report file Polyspace Specification

8.1 Functions shall have
prototype declarations
and the prototype shall be
visible at both the function
definition and call.

• Function XX has no
complete prototype
visible at call.

• Function XX has no
prototype visible at
definition.

Prototype visible at call must
be complete.

8.2 Whenever an object or
function is declared or
defined, its type shall be
explicitly stated

Whenever an object or
function is declared or
defined, its type shall be
explicitly stated.

8.3 For each function parameter
the type given in the
declaration and definition
shall be identical, and the
return types shall also be
identical.

Definition of function
'XX' incompatible with its
declaration.

Assumes that rule 8.1 is
not violated. The rule is
restricted to compatible
types. Can be turned to Off

8.4 If objects or functions are
declared more than once their
types shall be compatible.

• If objects or functions
are declared more than
once their types shall be
compatible.

• Global declaration
of 'XX' function has
incompatible type with
its definition.

• Global declaration
of 'XX' variable has
incompatible type with
its definition.

Violations of this rule might
be generated during the link
phase.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.5 There shall be no definitions
of objects or functions in a
header file

• Object 'XX' should not be
defined in a header file.

• Function 'XX' should not
be defined in a header
file.

Tentative of definitions are
considered as definitions.

 MISRA C:2004 Coding Rules

2-23

N. MISRA Definition Messages in report file Polyspace Specification

• Fragment of function
should not be defined in a
header file.

8.6 Functions shall always be
declared at file scope.

Function 'XX' should be
declared at file scope.

8.7 Objects shall be defined at
block scope if they are only
accessed from within a single
function

Object 'XX' should be
declared at block scope.

Restricted to static objects.

8.8 An external object or function
shall be declared in one file
and only one file

Function/Object 'XX' has
external declarations in
multiples files.

Restricted to explicit extern
declarations (tentative of
definitions are ignored).

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.9 Definition: An identifier
with external linkage shall
have exactly one external
definition.

• Procedure/Global
variable XX multiply
defined.

• Forbidden multiple
tentative of definition for
object XX

• Global variable has
multiples tentative of
definitions

• Undefined global
variable XX

Tentative of definitions are
considered as definitions,
no warning on predefined
symbols.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.10 All declarations and
definitions of objects or
functions at file scope shall
have internal linkage unless
external linkage is required

Function/Variable XX
should have internal
linkage.

Assumes that 8.1 is not
violated. No warning if 0
uses.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

2 Coding Rule Sets and Concepts

2-24

N. MISRA Definition Messages in report file Polyspace Specification

8.11 The static storage class
specifier shall be used in
definitions and declarations
of objects and functions that
have internal linkage

static storage class specifier
should be used on internal
linkage symbol XX.

8.12 When an array is declared
with external linkage, its
size shall be stated explicitly
or defined implicitly by
initialization

Size of array 'XX' should be
explicitly stated.

Initialization

N. MISRA Definition Messages in report file Polyspace Specification

9.1 All automatic variables shall
have been assigned a value
before being used.

 Checked during code
analysis.

Violations displayed as Non-
initialized variable results.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

9.2 Braces shall be used to
indicate and match the
structure in the nonzero
initialization of arrays and
structures.

Braces shall be used to
indicate and match the
structure in the nonzero
initialization of arrays and
structures.

9.3 In an enumerator list, the
= construct shall not be
used to explicitly initialize
members other than the first,
unless all items are explicitly
initialized.

In an enumerator list, the
= construct shall not be
used to explicitly initialize
members other than the
first, unless all items are
explicitly initialized.

 MISRA C:2004 Coding Rules

2-25

Arithmetic Type Conversion

N. MISRA Definition Messages in report file Polyspace Specification

10.1 The value of an expression
of integer type shall not be
implicitly converted to a
different underlying type if:

• it is not a conversion to a
wider integer type of the
same signedness, or

• the expression is complex,
or

• the expression is not
constant and is a function
argument, or

• the expression is not
constant and is a return
expression

• Implicit conversion of the
expression of underlying
type XX to the type
XX that is not a wider
integer type of the same
signedness.

• Implicit conversion of one
of the binary operands
whose underlying types
are XX and XX

• Implicit conversion of
the binary right hand
operand of underlying
type XX to XX that is not
an integer type.

• Implicit conversion of the
binary left hand operand
of underlying type XX to
XX that is not an integer
type.

ANSI C base types order
(signed char, short, int, long)
defines that T2 is wider than
T1 if T2 is on the right hand
of T1 or T2 = T1. The same
interpretation is applied on
the unsigned version of base
types.

An expression of bool or
enum types has int as
underlying type.

Plain char may have signed
or unsigned underlying type
(depending on Polyspace
target configuration or option
setting).

The underlying type of
a simple expression of
struct.bitfield is the base type
used in the bitfield definition,
the bitfield width is not token
into account and it assumes
that only signed | unsigned
int are used for bitfield (Rule
6.4).

10.1
(cont)

 • Implicit conversion of
the binary right hand
operand of underlying
type XX to XX that is not
a wider integer type of
the same signedness or
Implicit conversion of
the binary ? left hand
operand of underlying

No violation reported when:

• The implicit conversion is
a type widening, without
change of signedness if
integer

• The expression is an
argument expression or a
return expression

2 Coding Rule Sets and Concepts

2-26

N. MISRA Definition Messages in report file Polyspace Specification

type XX to XX, but it is a
complex expression.

• Implicit conversion
of complex integer
expression of underlying
type XX to XX.

• Implicit conversion of
non-constant integer
expression of underlying
type XX in function
return whose expected
type is XX.

• Implicit conversion of
non-constant integer
expression of underlying
type XX as argument
of function whose
corresponding parameter
type is XX.

No violation reported when
the following are all true:

• Implicit conversion
applies to a constant
expression and is a type
widening, with a possible
change of signedness if
integer

• The conversion does not
change the representation
of the constant value or
the result of the operation

• The expression is an
argument expression or
a return expression or an
operand expression of a
non-bitwise operator

 MISRA C:2004 Coding Rules

2-27

N. MISRA Definition Messages in report file Polyspace Specification

10.2 The value of an expression
of floating type shall not
be implicitly converted to a
different type if

• it is not a conversion to a
wider floating type, or

• the expression is complex,
or

• the expression is a
function argument, or

• the expression is a return
expression

• Implicit conversion of the
expression from XX to
XX that is not a wider
floating type.

• Implicit conversion of
the binary ? right hand
operand from XX to
XX, but it is a complex
expression.

• Implicit conversion of
the binary ? right hand
operand from XX to
XX that is not a wider
floating type or Implicit
conversion of the binary ?
left hand operand from
XX to XX, but it is a
complex expression.

• Implicit conversion
of complex floating
expression from XX to
XX.

• Implicit conversion of
floating expression of XX
type in function return
whose expected type is
XX.

• Implicit conversion of
floating expression of
XX type as argument
of function whose
corresponding parameter
type is XX.

ANSI C base types order
(float, double) defines that T2
is wider than T1 if T2 is on
the right hand of T1 or T2 =
T1.

No violation reported when:

• The implicit conversion is
a type widening

• The expression is an
argument expression or a
return expression.

2 Coding Rule Sets and Concepts

2-28

N. MISRA Definition Messages in report file Polyspace Specification

10.3 The value of a complex
expression of integer type
may only be cast to a type
that is narrower and of
the same signedness as
the underlying type of the
expression

Complex expression of
underlying type XX may
only be cast to narrower
integer type of same
signedness, however the
destination type is XX.

• ANSI C base types order
(signed char, short, int,
long) defines that T1 is
narrower than T2 if T2
is on the right hand of
T1 or T1 = T2. The same
methodology is applied on
the unsigned version of
base types.

• An expression of bool or
enum types has int as
underlying type.

• Plain char may have
signed or unsigned
underlying type
(depending on target
configuration or option
setting).

• The underlying type of
a simple expression of
struct.bitfield is the base
type used in the bitfield
definition, the bitfield
width is not token into
account and it assumes
that only signed, unsigned
int are used for bitfield
(Rule 6.4).

10.4 The value of a complex
expression of float type may
only be cast to narrower
floating type

Complex expression of XX
type may only be cast to
narrower floating type,
however the destination
type is XX.

ANSI C base types order
(float, double) defines that T1
is narrower than T2 if T2 is
on the right hand of T1 or T2
= T1.

 MISRA C:2004 Coding Rules

2-29

N. MISRA Definition Messages in report file Polyspace Specification

10.5 If the bitwise operator ~ and
<< are applied to an operand
of underlying type unsigned
char or unsigned short, the
result shall be immediately
cast to the underlying type of
the operand

Bitwise [<<|~] is applied to
the operand of underlying
type [unsigned char|
unsigned short], the result
shall be immediately cast to
the underlying type.

10.6 The “U” suffix shall be
applied to all constants of
unsigned types

No explicit 'U suffix on
constants of an unsigned
type.

 Warning when the type
determined from the value
and the base (octal, decimal
or hexadecimal) is unsigned
and there is no suffix u or U.

For example, when the size of
the int and long int data
types is 32 bits, the coding
rule checker will report a
violation of rule 10.6 for the
following line:

int a = 2147483648;

There is a difference between
decimal and hexadecimal
constants when int and
long int are not the same
size.

Pointer Type Conversion

N. MISRA Definition Messages in report file Polyspace Specification

11.1 Conversion shall not be
performed between a pointer
to a function and any type
other than an integral type

Conversion shall not be
performed between a pointer
to a function and any type
other than an integral type.

Casts and implicit
conversions involving a
function pointer.

Casts or implicit conversions
from NULL or (void*)0 do
not give any warning.

2 Coding Rule Sets and Concepts

2-30

N. MISRA Definition Messages in report file Polyspace Specification

11.2 Conversion shall not be
performed between a pointer
to an object and any type
other than an integral type,
another pointer to a object
type or a pointer to void

Conversion shall not be
performed between a pointer
to an object and any type
other than an integral type,
another pointer to a object
type or a pointer to void.

There is also a warning on
qualifier loss

11.3 A cast should not be
performed between a pointer
type and an integral type

A cast should not be
performed between a pointer
type and an integral type.

Exception on zero constant.
Extended to all conversions

11.4 A cast should not be
performed between a pointer
to object type and a different
pointer to object type.

A cast should not be
performed between a pointer
to object type and a different
pointer to object type.

11.5 A cast shall not be performed
that removes any const or
volatile qualification from the
type addressed by a pointer

A cast shall not be
performed that removes any
const or volatile qualification
from the type addressed by a
pointer

Extended to all conversions

Expressions

N. MISRA Definition Messages in report file Polyspace Specification

12.1 Limited dependence
should be placed on C's
operator precedence rules in
expressions

Limited dependence
should be placed on C's
operator precedence rules in
expressions

12.2 The value of an expression
shall be the same under any
order of evaluation that the
standard permits.

• The value of 'sym'
depends on the order of
evaluation.

• The value of volatile
'sym' depends on the
order of evaluation
because of multiple
accesses.

The expression is a simple
expression of symbols (Unlike
i = i++; no detection on tab[2]
= tab[2]++;). Rule 12.2 check
assumes that no assignment
in expressions that yield a
Boolean values (rule 13.1)
and the comma operator is
not used (rule 12.10).

 MISRA C:2004 Coding Rules

2-31

N. MISRA Definition Messages in report file Polyspace Specification

12.3 The sizeof operator should
not be used on expressions
that contain side effects.

The sizeof operator should
not be used on expressions
that contain side effects.

No warning on volatile
accesses

12.4 The right hand operand of
a logical && or || operator
shall not contain side effects.

The right hand operand of
a logical && or || operator
shall not contain side effects.

No warning on volatile
accesses

12.5 The operands of a logical
&& or || shall be primary-
expressions.

• operand of logical && is
not a primary expression

• operand of logical || is
not a primary expression

• The operands of a
logical && or || shall be
primary-expressions.

During preprocessing,
violations of this rule are
detected on the expressions
in #if directives.

Allowed exception on
associatively (a && b && c),
(a || b || c).

2 Coding Rule Sets and Concepts

2-32

N. MISRA Definition Messages in report file Polyspace Specification

12.6 Operands of logical operators
(&&, || and !) should
be effectively Boolean.
Expression that are
effectively Boolean should
not be used as operands to
operators other than (&&, ||
or !).

• Operand of '!' logical
operator should be
effectively Boolean.

• Left operand of '%s'
logical operator should be
effectively Boolean.

• Right operand of '%s'
logical operator should be
effectively Boolean.

• %s operand of '%s' is
effectively Boolean.
Boolean should not be
used as operands to
operators other than
'&&', '||', '!', '=', '==', '!='
and '?:'.

The operand of a logical
operator should be a Boolean
data type. Although the C
standard does not explicitly
define the Boolean data
type, the standard implicitly
assumes the use of the
Boolean data type.

Some operators may return
Boolean-like expressions, for
example, (var == 0).

Consider the following code:

unsigned char flag;

if (!flag)

The rule checker reports a
violation of rule 12.6:

Operand of '!' logical

operator should be

effectively Boolean.

The operand flag is not a
Boolean but an unsigned
char.

To be compliant with rule
12.6, the code must be
rewritten either as

if (!(flag != 0))

or

if (flag == 0)

The use of the option -
boolean-types may
increase or decrease the

 MISRA C:2004 Coding Rules

2-33

N. MISRA Definition Messages in report file Polyspace Specification

number of warnings
generated.

12.7 Bitwise operators shall not
be applied to operands whose
underlying type is signed

• [~/Left Shift/Right shift/
&] operator applied on
an expression whose
underlying type is
signed.

• Bitwise ~ on operand of
signed underlying type
XX.

• Bitwise [<<|>>] on left
hand operand of signed
underlying type XX.

• Bitwise [& | ^] on two
operands of s

The underlying type for an
integer is signed when:

• it does not have a u or U
suffix

• it is small enough to
fit into a 64 bits signed
number

12.8 The right hand operand of
a shift operator shall lie
between zero and one less
than the width in bits of the
underlying type of the left
hand operand.

• shift amount is negative
• shift amount is bigger

than 64
• Bitwise [<< >>] count out

of range [0 ..X] (width of
the underlying type XX
of the left hand operand -
1)..

The numbers that are
manipulated in preprocessing
directives are 64 bits wide
so that valid shift range is
between 0 and 63

Check is also extended onto
bitfields with the field width
or the width of the base type
when it is within a complex
expression

12.9 The unary minus operator
shall not be applied to an
expression whose underlying
type is unsigned.

• Unary - on operand of
unsigned underlying type
XX.

• Minus operator applied
to an expression whose
underlying type is
unsigned

The underlying type for an
integer is signed when:

• it does not have a u or U
suffix

• it is small enough to
fit into a 64 bits signed
number

12.10 The comma operator shall not
be used.

The comma operator shall
not be used.

2 Coding Rule Sets and Concepts

2-34

N. MISRA Definition Messages in report file Polyspace Specification

12.11 Evaluation of constant
unsigned expression should
not lead to wraparound.

Evaluation of constant
unsigned integer
expressions should not lead
to wrap-around.

12.12 The underlying bit
representations of floating-
point values shall not be
used.

The underlying bit
representations of floating-
point values shall not be
used.

Warning when:

• A float pointer is cast
as a pointer to another
data type. Casting a float
pointer as a pointer to
void does not generate a
warning.

• A float is packed with
another data type. For
example:

union {

 float f;

 int i;

} …

12.13 The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression

The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression

Warning when ++ or --
operators are not used alone.

Control Statement Expressions

N. MISRA Definition Messages in report file Polyspace Specification

13.1 Assignment operators shall
not be used in expressions
that yield Boolean values.

Assignment operators shall
not be used in expressions
that yield Boolean values.

13.2 Tests of a value against zero
should be made explicit,
unless the operand is
effectively Boolean

Tests of a value against zero
should be made explicit,
unless the operand is
effectively Boolean

No warning is given on
integer constants. Example: if
(2)

The use of the option -
boolean-types may

 MISRA C:2004 Coding Rules

2-35

N. MISRA Definition Messages in report file Polyspace Specification

increase or decrease the
number of warnings
generated.

13.3 Floating-point expressions
shall not be tested for
equality or inequality.

Floating-point expressions
shall not be tested for
equality or inequality.

Warning on directs tests only.

13.4 The controlling expression
of a for statement shall not
contain any objects of floating
type

The controlling expression
of a for statement shall
not contain any objects of
floating type

If for index is a variable
symbol, checked that it is not
a float.

2 Coding Rule Sets and Concepts

2-36

N. MISRA Definition Messages in report file Polyspace Specification

13.5 The three expressions of a for
statement shall be concerned
only with loop control

• 1st expression should be
an assignment.

• Bad type for loop counter
(XX).

• 2nd expression should be
a comparison.

• 2nd expression should be
a comparison with loop
counter (XX).

• 3rd expression should
be an assignment of loop
counter (XX).

• 3rd expression: assigned
variable should be the
loop counter (XX).

• The following kinds of for
loops are allowed:

(a) all three expressions
shall be present;

(b) the 2nd and 3rd
expressions shall be
present with prior
initialization of the loop
counter;

(c) all three expressions
shall be empty for a
deliberate infinite loop.

Checked if the for loop
index (V) is a variable
symbol; checked if V is
the last assigned variable
in the first expression (if
present). Checked if, in first
expression, if present, is
assignment of V; checked if
in 2nd expression, if present,
must be a comparison of V;
Checked if in 3rd expression,
if present, must be an
assignment of V.

13.6 Numeric variables being
used within a for loop for
iteration counting should not
be modified in the body of the
loop.

Numeric variables being
used within a for loop for
iteration counting should
not be modified in the body
of the loop.

Detect only direct
assignments if the for loop
index is known and if it is a
variable symbol.

 MISRA C:2004 Coding Rules

2-37

N. MISRA Definition Messages in report file Polyspace Specification

13.7 Boolean operations whose
results are invariant shall not
be permitted

• Boolean operations
whose results are
invariant shall not be
permitted. Expression is
always true.

• Boolean operations
whose results are
invariant shall not be
permitted. Expression is
always false.

• Boolean operations
whose results are
invariant shall not be
permitted.

During compilation, check
comparisons with at least one
constant operand.

Control Flow

N. MISRA Definition Messages in report file Polyspace Specification

14.1 There shall be no
unreachable code.

There shall be no
unreachable code.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

14.2 All non-null statements shall
either have at lest one side
effect however executed, or
cause control flow to change

• All non-null statements
shall either:

• have at lest one side
effect however executed,
or

• cause control flow to
change

14.3 All non-null statements shall
either

• have at lest one side effect
however executed, or

• cause control flow to
change

A null statement shall
appear on a line by itself

We assume that a ';' is a
null statement when it is
the first character on a line
(excluding comments). The
rule is violated when:

2 Coding Rule Sets and Concepts

2-38

N. MISRA Definition Messages in report file Polyspace Specification

• there are some comments
before it on the same line.

• there is a comment
immediately after it

• there is something else
than a comment after the
';' on the same line.

14.4 The goto statement shall not
be used.

The goto statement shall not
be used.

14.5 The continue statement shall
not be used.

The continue statement
shall not be used.

14.6 For any iteration statement
there shall be at most one
break statement used for loop
termination

For any iteration statement
there shall be at most one
break statement used for
loop termination

14.7 A function shall have a single
point of exit at the end of the
function

A function shall have a
single point of exit at the
end of the function

14.8 The statement forming the
body of a switch, while, do
while or for statement shall
be a compound statement

• The body of a do while
statement shall be a
compound statement.

• The body of a for
statement shall be a
compound statement.

• The body of a switch
statement shall be a
compound statement

 MISRA C:2004 Coding Rules

2-39

N. MISRA Definition Messages in report file Polyspace Specification

14.9 An if (expression) construct
shall be followed by a
compound statement. The
else keyword shall be followed
by either a compound
statement, or another if
statement

• An if (expression)
construct shall be
followed by a compound
statement.

• The else keyword shall
be followed by either a
compound statement, or
another if statement

14.10 All if else if constructs should
contain a final else clause.

All if else if constructs
should contain a final else
clause.

Switch Statements

N. MISRA Definition Messages in report file Polyspace Specification

15.0 Unreachable code is detected
between switch statement
and first case.

Note: This is not a MISRA
C2004 rule.

switch statements syntax
normative restrictions.

Warning on declarations or
any statements before the
first switch case.

Warning on label or jump
statements in the body of
switch cases.

On the following example, the
rule is displayed in the log
file at line 3:

1 ...

2 switch(index) {

3 var = var + 1;

// RULE 15.0

// violated

4case 1: ...

The code between switch
statement and first case
is checked as dead code by
Polyspace. It follows ANSI
standard behavior.

2 Coding Rule Sets and Concepts

2-40

N. MISRA Definition Messages in report file Polyspace Specification

15.1 A switch label shall only
be used when the most
closely-enclosing compound
statement is the body of a
switch statement

A switch label shall only
be used when the most
closely-enclosing compound
statement is the body of a
switch statement

15.2 An unconditional break
statement shall terminate
every non-empty switch
clause

An unconditional break
statement shall terminate
every non-empty switch
clause

Warning for each non-
compliant case clause.

15.3 The final clause of a switch
statement shall be the default
clause

The final clause of a switch
statement shall be the
default clause

15.4 A switch expression should
not represent a value that is
effectively Boolean

A switch expression should
not represent a value that is
effectively Boolean

The use of the option -
boolean-types may
increase the number of
warnings generated.

15.5 Every switch statement shall
have at least one case clause

Every switch statement
shall have at least one case
clause

Functions

N. MISRA Definition Messages in report file Polyspace Specification

16.1 Functions shall not be
defined with variable
numbers of arguments.

Function XX should not be
defined as varargs.

16.2 Functions shall not call
themselves, either directly or
indirectly.

Function %s should not call
itself.

Done by Polyspace software
(Use the call graph in
Polyspace Code Prover).
Polyspace also partially
checks this rule during the
compilation phase.

16.3 Identifiers shall be given
for all of the parameters
in a function prototype
declaration.

Identifiers shall be given
for all of the parameters
in a function prototype
declaration.

Assumes Rule 8.6 is not
violated.

 MISRA C:2004 Coding Rules

2-41

N. MISRA Definition Messages in report file Polyspace Specification

16.4 The identifiers used in the
declaration and definition of
a function shall be identical.

The identifiers used in the
declaration and definition of
a function shall be identical.

Assumes that rules 8.8, 8.1
and 16.3 are not violated.

All occurrences are detected.
16.5 Functions with no

parameters shall be declared
with parameter type void.

Functions with no
parameters shall be declared
with parameter type void.

Definitions are also checked.

16.6 The number of arguments
passed to a function shall
match the number of
parameters.

• Too many arguments to
XX.

• Insufficient number of
arguments to XX.

Assumes that rule 8.1 is not
violated.

16.7 A pointer parameter in a
function prototype should be
declared as pointer to const
if the pointer is not used to
modify the addressed object.

Pointer parameter in a
function prototype should be
declared as pointer to const
if the pointer is not used to
modify the addressed object.

Warning if a non-const
pointer parameter is either
not used to modify the
addressed object or is passed
to a call of a function that
is declared with a const
pointer parameter.

16.8 All exit paths from a function
with non-void return type
shall have an explicit
return statement with an
expression.

Missing return value for
non-void function XX.

Warning when a non-void
function is not terminated
with an unconditional return
with an expression.

16.9 A function identifier shall
only be used with either
a preceding &, or with a
parenthesized parameter list,
which may be empty.

Function identifier XX
should be preceded by a & or
followed by a parameter list.

2 Coding Rule Sets and Concepts

2-42

N. MISRA Definition Messages in report file Polyspace Specification

16.10 If a function returns error
information, then that error
information shall be tested.

If a function returns error
information, then that error
information shall be tested.

Warning if a non-void
function is called and the
returned value is ignored.

No warning if the result of
the call is cast to void.

No check performed for
calls of memcpy, memmove,
memset, strcpy, strncpy,
strcat, or strncat.

Pointers and Arrays

N. MISRA Definition Messages in report file Polyspace Specification

17.1 Pointer arithmetic shall only
be applied to pointers that
address an array or array
element.

Pointer arithmetic shall only
be applied to pointers that
address an array or array
element.

17.2 Pointer subtraction shall only
be applied to pointers that
address elements of the same
array

Pointer subtraction shall
only be applied to pointers
that address elements of the
same array.

17.3 >, >=, <, <= shall not be
applied to pointer types
except where they point to
the same array.

>, >=, <, <= shall not be
applied to pointer types
except where they point to
the same array.

17.4 Array indexing shall be the
only allowed form of pointer
arithmetic.

Array indexing shall be the
only allowed form of pointer
arithmetic.

Warning on operations on
pointers. (p+I, I+p and p-I,
where p is a pointer and I an
integer).

17.5 A type should not contain
more than 2 levels of pointer
indirection

A type should not contain
more than 2 levels of pointer
indirection

17.6 The address of an object with
automatic storage shall not

Pointer to a parameter is an
illegal return value. Pointer

Warning when assigning
address to a global variable,

 MISRA C:2004 Coding Rules

2-43

N. MISRA Definition Messages in report file Polyspace Specification

be assigned to an object that
may persist after the object
has ceased to exist.

to a local is an illegal return
value.

returning a local variable
address, or returning a
parameter address.

Structures and Unions

N. MISRA Definition Messages in report file Polyspace Specification

18.1 All structure or union types
shall be complete at the end
of a translation unit.

All structure or union types
shall be complete at the end
of a translation unit.

Warning for all incomplete
declarations of structs or
unions.

18.2 An object shall not be
assigned to an overlapping
object.

• An object shall not
be assigned to an
overlapping object.

• Destination and source of
XX overlap, the behavior
is undefined.

18.4 Unions shall not be used Unions shall not be used.

Preprocessing Directives

N. MISRA Definition Messages in report file Polyspace Specification

19.1 #include statements in a file
shall only be preceded by
other preprocessors directives
or comments

#include statements in a
file shall only be preceded
by other preprocessors
directives or comments

A message is displayed
when a #include directive
is preceded by other things
than preprocessor directives,
comments, spaces or “new
lines”.

19.2 Nonstandard characters
should not occur in header
file names in #include
directives

• A message is displayed
on characters ', \, " or /
* between < and > in
#include <filename>

• A message is displayed
on characters ', \or /
* between " and " in
#include "filename"

2 Coding Rule Sets and Concepts

2-44

N. MISRA Definition Messages in report file Polyspace Specification

19.3 The #include directive shall
be followed by either a
<filename> or "filename"
sequence.

• '#include' expects
"FILENAME" or
<FILENAME>

• '#include_next' expects
"FILENAME" or
<FILENAME>

19.4 C macros shall only expand
to a braced initializer, a
constant, a parenthesized
expression, a type qualifier,
a storage class specifier, or a
do-while-zero construct.

Macro '<name>' does not
expand to a compliant
construct.

We assume that a macro
definition does not violate
this rule when it expands to:

• a braced construct (not
necessarily an initializer)

• a parenthesized construct
(not necessarily an
expression)

• a number
• a character constant
• a string constant (can

be the result of the
concatenation of string
field arguments and
literal strings)

• the following keywords:
typedef, extern, static,
auto, register, const,
volatile, __asm__ and
__inline__

• a do-while-zero construct
19.5 Macros shall not be #defined

and #undefd within a block.
• Macros shall not be

#define’d within a
block.

• Macros shall not be
#undef’d within a block.

19.6 #undef shall not be used. #undef shall not be used.

 MISRA C:2004 Coding Rules

2-45

N. MISRA Definition Messages in report file Polyspace Specification

19.7 A function should be used in
preference to a function like-
macro.

A function should be used in
preference to a function like-
macro

Message on all function-like
macro definitions.

19.8 A function-like macro shall
not be invoked without all of
its arguments

• arguments given to
macro '<name>'

• macro '<name>' used
without args.

• macro '<name>' used
with just one arg.

• macro '<name>'
used with too many
(<number>) args.

19.9 Arguments to a function-
like macro shall not contain
tokens that look like
preprocessing directives.

Macro argument shall not
look like a preprocessing
directive.

This rule is detected as
violated when the '#'
character appears in a macro
argument (outside a string or
character constant)

19.10 In the definition of a
function-like macro each
instance of a parameter shall
be enclosed in parentheses
unless it is used as the
operand of # or ##.

Parameter instance shall be
enclosed in parentheses.

If x is a macro parameter,
the following instances of x
as an operand of the # and ##
operators do not generate a
warning: #x, ##x, and x##.
Otherwise, parentheses are
required around x.

The software does not
generate a warning if a
parameter is reused as
an argument of a function
or function-like macro.
For example, consider a
parameter x. The software
does not generate a warning
if x appears as (x) or (x, or
,x) or ,x,.

2 Coding Rule Sets and Concepts

2-46

N. MISRA Definition Messages in report file Polyspace Specification

19.11 All macro identifiers in
preprocessor directives
shall be defined before use,
except in #ifdef and #ifndef
preprocessor directives and
the defined() operator.

'<name>' is not defined.

19.12 There shall be at most one
occurrence of the # or ##
preprocessor operators in a
single macro definition.

More than one occurrence
of the # or ## preprocessor
operators.

19.13 The # and ## preprocessor
operators should not be used

Message on definitions
of macros using # or ##
operators

19.14 The defined preprocessor
operator shall only be used
in one of the two standard
forms.

'defined' without an
identifier.

19.15 Precautions shall be taken
in order to prevent the
contents of a header file being
included twice.

Precautions shall be taken
in order to prevent multiple
inclusions.

When a header file is
formatted as,

#ifndef <control macro>

#define <control macro>

<contents> #endif

or,

#ifndef <control macro>

#error ...

#else

#define <control macro>

<contents> #endif

it is assumed that
precautions have been
taken to prevent multiple
inclusions. Otherwise, a
violation of this MISRA rule
is detected.

 MISRA C:2004 Coding Rules

2-47

N. MISRA Definition Messages in report file Polyspace Specification

19.16 Preprocessing directives shall
be syntactically meaningful
even when excluded by the
preprocessor.

directive is not syntactically
meaningful.

19.17 All #else, #elif and #endif
preprocessor directives shall
reside in the same file as the
#if or #ifdef directive to which
they are related.

• '#elif' not within a
conditional.

• '#else' not within a
conditional.

• '#elif' not within a
conditional.

• '#endif' not within a
conditional.

• unbalanced '#endif'.
• unterminated '#if'

conditional.
• unterminated '#ifdef'

conditional.
• unterminated '#ifndef'

conditional.

Standard Libraries

N. MISRA Definition Messages in report file Polyspace Specification

20.1 Reserved identifiers, macros
and functions in the standard
library, shall not be defined,
redefined or undefined.

• The macro '<name> shall
not be redefined.

• The macro '<name> shall
not be undefined.

20.2 The names of standard
library macros, objects and
functions shall not be reused.

Identifier XX should not be
used.

In case a macro whose name
corresponds to a standard
library macro, object or
function is defined, the rule
that is detected as violated is
20.1. Tentative of definitions
are considered as definitions.

2 Coding Rule Sets and Concepts

2-48

N. MISRA Definition Messages in report file Polyspace Specification

20.3 The validity of values passed
to library functions shall be
checked.

Validity of values passed to
library functions shall be
checked

Warning for argument in
library function call if the
following are all true:

• Argument is a local
variable

• Local variable is not
tested between last
assignment and call to the
library function

• Library function is a
common mathematical
function

• Corresponding parameter
of the library function has
a restricted input domain.

The library function can be
one of the following : sqrt,
tan, pow, log, log10, fmod,
acos, asin, acosh, atanh,
or atan2.

20.4 Dynamic heap memory
allocation shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the dynamic heap
memory allocation functions
are actually macros and the
macro is expanded in the
code, this rule is detected as
violated. Assumes rule 20.2 is
not violated.

20.5 The error indicator errno
shall not be used

The error indicator errno
shall not be used

Assumes that rule 20.2 is not
violated

20.6 The macro offsetof, in library
<stddef.h>, shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

Assumes that rule 20.2 is not
violated

 MISRA C:2004 Coding Rules

2-49

N. MISRA Definition Messages in report file Polyspace Specification

20.7 The setjmp macro and the
longjmp function shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the longjmp function
is actually a macro and the
macro is expanded in the
code, this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.8 The signal handling facilities
of <signal.h> shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case some of the signal
functions are actually macros
and are expanded in the
code, this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.9 The input/output library
<stdio.h> shall not be used in
production code.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the input/output
library functions are actually
macros and are expanded in
the code, this rule is detected
as violated. Assumes that
rule 20.2 is not violated

20.10 The library functions atof,
atoi and toll from library
<stdlib.h> shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the atof, atoi and atoll
functions are actually macros
and are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.11 The library functions abort,
exit, getenv and system from
library <stdlib.h> shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the abort, exit,
getenv and system functions
are actually macros and
are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.12 The time handling functions
of library <time.h> shall not
be used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the time handling
functions are actually macros
and are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

2 Coding Rule Sets and Concepts

2-50

Runtime Failures

N. MISRA Definition Messages in report file Polyspace Specification

21.1 Minimization of runtime
failures shall be ensured by
the use of at least one of:

• static verification tools/
techniques;

• dynamic verification tools/
techniques;

• explicit coding of checks to
handle runtime faults.

 Done by Polyspace. Bug
Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

Unsupported MISRA C:2004 Rules

The Polyspace coding rules checker does not check the following MISRA C:2004 coding
rules. These rules cannot be enforced because they are outside the scope of Polyspace
software. They may concern documentation, dynamic aspects, or functional aspects of
MISRA rules. The “Polyspace Specification” column describes the reason each rule is
not checked.

Environment

Rule Description Polyspace Specification

1.2 (Required) No reliance shall be placed on
undefined or unspecified behavior

Not statically checkable unless the data
dynamic properties is taken into account

1.3 (Required) Multiple compilers and/or languages
shall only be used if there is a common
defined interface standard for object
code to which the language/compilers/
assemblers conform.

It is a process rule method.

1.4 (Required) The compiler/linker/Identifiers
(internal and external) shall not rely on
significance of more than 31 characters.
Furthermore the compiler/linker shall
be checked to ensure that 31 character

The documentation of compiler must be
checked.

 MISRA C:2004 Coding Rules

2-51

Rule Description Polyspace Specification

significance and case sensitivity are
supported for external identifiers.

1.5 (Advisory) Floating point implementations should
comply with a defined floating point
standard.

The documentation of compiler must be
checked as this implementation is done
by the compiler

Language Extensions

Rule Description Polyspace Specification

2.4 (Advisory) Sections of code should not be
“commented out”

It might be some pseudo code or code
that does not compile inside a comment.

Documentation

Rule Description Polyspace Specification

3.1 (Required) All usage of implementation-defined
behavior shall be documented.

The documentation of compiler must
be checked. Error detection is based on
undefined behavior, according to choices
made for implementation- defined
constructions. Documentation can not be
checked.

3.2 (Required) The character set and the
corresponding encoding shall be
documented.

The documentation of compiler must be
checked.

3.3 (Advisory) The implementation of integer division
in the chosen compiler should be
determined, documented and taken into
account.

The documentation of compiler must be
checked.

3.5 (Required) The implementation-defined behavior
and packing of bitfields shall be
documented if being relied upon.

The documentation of compiler must be
checked.

3.6 (Required) All libraries used in production code
shall be written to comply with the
provisions of this document, and shall
have been subject to appropriate
validation.

The documentation of compiler must be
checked.

2 Coding Rule Sets and Concepts

2-52

Structures and Unions

Rule Description Polyspace Specification

18.3 (Required) An area of memory shall not be reused
for unrelated purposes.

"purpose" is functional design issue.

 Polyspace MISRA C:2012 Checker

2-53

Polyspace MISRA C:2012 Checker

The Polyspace MISRA C:2012 checker helps you to comply with the MISRA C 2012
coding standard.3

When MISRA C:2012 guidelines are violated, the Polyspace MISRA C:2012 checker
provides messages with information about the violated rule or directive. Most violations
are found during the compile phase of an analysis.

The checker can check 138 of the 159 MISRA C:2012 guidelines.

Each guideline is categorized into one of these three categories: mandatory, required,
or advisory. When you set up rule checking, you can select subsets of these categories
to check. For automatically generated code, some rules change categories, including to
one additional category: readability. The “Use generated code requirements (C)” option
activates the categorization for automatically generated code.

There are additional subsets of MISRA C:2012 guidelines defined by Polyspace called
Software Quality Objectives (SQO) that can have a direct or indirect impact on the
precision of your results. When you set up checking, you can select these subsets. These
subsets are defined in “Software Quality Objective Subsets (C:2012)” on page 2-54.

See Also
“Check MISRA C:2012” | “Use generated code requirements (C)”

Related Examples
• “Activate Coding Rules Checker”
• “Set Up Coding Rules Checking”

More About
• “MISRA C:2012 Directives and Rules”
• “Software Quality Objective Subsets (C:2012)” on page 2-54

3. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA
Consortium.

2 Coding Rule Sets and Concepts

2-54

Software Quality Objective Subsets (C:2012)

In this section...

“Guidelines in SQO-Subset1” on page 2-54
“Guidelines in SQO-Subset2” on page 2-55

These subsets of MISRA C:2012 guidelines to identify the guidelines that can have a
direct or indirect impact on the precision of your Polyspace results. When you set up
checking, you can select these subsets.

Guidelines in SQO-Subset1

Rule Description

8.8 The static storage class specifier shall be used in all declarations of
objects and functions that have internal linkage

8.11 When an array with external linkage is declared, its size should be
explicitly specified

8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and

any other type
11.2 Conversions shall not be performed between a pointer to an incomplete

type and any other type
11.4 A conversion should not be performed between a pointer to object and

an integer type
11.5 A conversion should not be performed from pointer to void into pointer

to object
11.6 A cast shall not be performed between pointer to void and an arithmetic

type
11.7 A cast shall not be performed between pointer to object and a non-

integer arithmetic type
14.1 A loop counter shall not have essentially floating type
14.2 A for loop shall be well-formed
15.1 The goto statement should not be used

 Software Quality Objective Subsets (C:2012)

2-55

Rule Description

15.2 The goto statement shall jump to a label declared later in the same
function

15.3 Any label referenced by a goto statement shall be declared in the same
block, or in any block enclosing the goto statement

15.5 A function should have a single point of exit at the end
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
18.3 The relational operators >, >=, < and <= shall not be applied to objects

of pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of

pointer type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to

another object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not

be used

Guidelines in SQO-Subset2

Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding
rules enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule Description

8.8 The static storage class specifier shall be used in all declarations of
objects and functions that have internal linkage

8.11 When an array with external linkage is declared, its size should be
explicitly specified

8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and

any other type

2 Coding Rule Sets and Concepts

2-56

Rule Description

11.2 Conversions shall not be performed between a pointer to an incomplete
type and any other type

11.4 A conversion should not be performed between a pointer to object and
an integer type

11.5 A conversion should not be performed from pointer to void into pointer
to object

11.6 A cast shall not be performed between pointer to void and an arithmetic
type

11.7 A cast shall not be performed between pointer to object and a non-
integer arithmetic type

11.8 A cast shall not remove any const or volatile qualification from the type
pointed to by a pointer

12.1 The precedence of operators within expressions should be made explicit
12.3 The comma operator should not be used
13.2 The value of an expression and its persistent side effects shall be the

same under all permitted evaluation orders
13.4 The result of an assignment operator should not be used
14.1 A loop counter shall not have essentially floating type
14.2 A for loop shall be well-formed
14.4 The controlling expression of an if statement and the controlling

expression of an iteration-statement shall have essentially Boolean type
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same

function
15.3 Any label referenced by a goto statement shall be declared in the same

block, or in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration- statement or a selection- statement shall be a

compound- statement
15.7 All if … else if constructs shall be terminated with an else statement
16.4 Every switch statement shall have a default label

 Software Quality Objective Subsets (C:2012)

2-57

Rule Description

16.5 A default label shall appear as either the first or the last switch label of
a switch statement

17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
17.4 All exit paths from a function with non-void return type shall have an

explicit return statement with an expression
18.3 The relational operators >, >=, < and <= shall not be applied to objects

of pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of

pointer type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to

another object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
20.4 A macro shall not be defined with the same name as a keyword
20.6 Tokens that look like a preprocessing directive shall not occur within a

macro argument
20.7 Expressions resulting from the expansion of macro parameters shall be

enclosed in parentheses
20.9 All identifiers used in the controlling expression of #if or #elif

preprocessing directives shall be #define'd before evaluation
20.11 A macro parameter immediately following a # operator shall not

immediately be followed by a ## operator
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not

be used

See Also
“Check MISRA C:2012” | “Use generated code requirements (C)”

Related Examples
• “Activate Coding Rules Checker”

2 Coding Rule Sets and Concepts

2-58

• “Set Up Coding Rules Checking”

More About
• “MISRA C:2012 Directives and Rules”

 Unsupported MISRA C:2012 Guidelines

2-59

Unsupported MISRA C:2012 Guidelines

The Polyspace coding rules checker does not check the following MISRA C:2012 coding
rules. These rules cannot be enforced because they are outside the scope of Polyspace
software. These guidelines concern documentation, dynamic aspects, or functional
aspects of MISRA rules.

Number Category AGC
Category

Definition

Directive
1.1

Required Required Any implementation-defined behavior on which the
output of the program depends shall be documented and
understood

Directive
2.1

Required Required All source files shall compile without any compilation
errors

Directive
3.1

Required Required All code shall be traceable to documented requirements

Directive
4.2

Advisory Advisory All usage of assembly language should be documented

Directive
4.4

Advisory Advisory Sections of code should not be “commented out”

Directive
4.5

Advisory Readability Identifiers in the same name space with overlapping
visibility should be typographically unambiguous

Directive
4.7

Required Required If a function returns error information, then that error
information shall be tested

Directive
4.8

Advisory Advisory If a pointer to a structure or union is never dereferenced
within a translation unit, then the implementation of the
object should be hidden

Directive
4.12

Required Required Dynamic memory allocation shall not be used

Directive
4.13

Advisory Advisory Functions which are designed to provide operations on a
resource should be called in an appropriate sequence

Rule 2.6 Advisory Readability A function should not contain unused label declarations
Rule 2.7 Advisory Readability There should be no unused parameters in functions

2 Coding Rule Sets and Concepts

2-60

Number Category AGC
Category

Definition

Rule 17.5 Advisory Readability The function argument corresponding to a parameter
declared to have an array type shall have an appropriate
number of elements

Rule 17.8 Advisory Readability A function parameter should not be modified
Rule 21.12 Advisory Advisory The exception handling features of <fenv.h> should not be

used.
Rule 22.1 Required Required All resources obtained dynamically by means of Standard

Library functions shall be explicitly released
Rule 22.2 Mandatory Mandatory A block of memory shall only be freed if it was allocated by

means of a Standard Library function
Rule 22.3 Required Required The same file shall not be open for read and write access

at the same time on different streams
Rule 22.4 Mandatory Mandatory There shall be no attempt to write to a stream which has

been opened as read only
Rule 22.5 Mandatory Mandatory A pointer to a FILE object shall not be dereferenced
Rule 22.6 Mandatory Mandatory The value of a pointer to a FILE shall not be used after the

associated stream has been closed

 Polyspace MISRA C++ Checker

2-61

Polyspace MISRA C++ Checker

The Polyspace MISRA C++ checker helps you comply with theMISRA C++:2008 coding
standard.4

When MISRA C++ rules are violated, the Polyspace MISRA C++ checker enables
Polyspace software to provide messages with information about the rule violations. Most
messages are reported during the compile phase of an analysis. The MISRA C++ checker
can check 185 of the 228 MISRA C++ coding rules.

There are subsets of MISRA C++ coding rules that can have a direct or indirect impact
on the selectivity (reliability percentage) of your results. When you set up rule checking,
you can select these subsets directly. These subsets are defined in “Software Quality
Objective Subsets (C++)” on page 2-62.

Note: The Polyspace MISRA C++ checker is based on MISRA C++:2008 – “Guidelines for
the use of the C++ language in critical systems." For more information on these coding
standards, see http://www.misra-cpp.com.

4. MISRA is a registered trademark of MISRA Ltd., held on behalf of the MISRA Consortium.

http://www.misra-cpp.com/

2 Coding Rule Sets and Concepts

2-62

Software Quality Objective Subsets (C++)
In this section...

“SQO Subset 1 – Direct Impact on Selectivity” on page 2-62
“SQO Subset 2 – Indirect Impact on Selectivity” on page 2-64

SQO Subset 1 – Direct Impact on Selectivity

The following set of coding rules will typically improve the selectivity of your results.

MISRA C++ Rule Description

2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in
an outer scope.

3-1-3 When an array is declared, its size shall either be stated explicitly or defined
implicitly by initialization.

3-3-2 The One Definition Rule shall not be violated.
3-9-3 The underlying bit representations of floating-point values shall not be used.
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they

point to the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer

indirection.
5-2-8 An object with integer type or pointer to void type shall not be converted to an

object with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality

or inequality.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating

type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-

counter shall only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n

remains constant for the duration of the loop.

 Software Quality Objective Subsets (C++)

2-63

MISRA C++ Rule Description

6-6-1 Any label referenced by a goto statement shall be declared in the same block,
or in a block enclosing the goto statement.

6-6-2 The goto statement shall jump to a label declared later in the same function
body.

6-6-4 For any iteration statement there shall be no more than one break or goto
statement used for loop termination.

6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.
7-5-2 The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same

hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each

path through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is

itself declared as pure virtual.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a

switch statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a

catch handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.

2 Coding Rule Sets and Concepts

2-64

MISRA C++ Rule Description

15-3-6 Where multiple handlers are provided in a single try-catch statement or
function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations
of the same function (in other translation units) shall be declared with the
same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function

shall only be capable of throwing exceptions of the indicated type(s).
18-4-1 Dynamic heap memory allocation shall not be used.

SQO Subset 2 – Indirect Impact on Selectivity

Good design practices generally lead to less code complexity, which can improve the
selectivity of your results. The following set of coding rules may help to address design
issues that impact selectivity. The SQO-subset2 option checks the rules in SQO-
subset1 and SQO-subset2.

MISRA C++ Rule Description

2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in
an outer scope.

3-1-3 When an array is declared, its size shall either be stated explicitly or defined
implicitly by initialization.

3-3-2 If a function has internal linkage then all re-declarations shall include the
static storage class specifier.

3-4-1 An identifier declared to be an object or type shall be defined in a block that
minimizes its visibility.

3-9-2 typedefs that indicate size and signedness should be used in place of the basic
numerical types.

3-9-3 The underlying bit representations of floating-point values shall not be used.
4-5-1 Expressions with type bool shall not be used as operands to built-in operators

other than the assignment operator =, the logical operators &&, ||, !, the

 Software Quality Objective Subsets (C++)

2-65

MISRA C++ Rule Description

equality operators == and !=, the unary & operator, and the conditional
operator.

5-0-1 The value of an expression shall be the same under any order of evaluation
that the standard permits.

5-0-2 Limited dependence should be placed on C++ operator precedence rules in
expressions.

5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression.
5-0-8 An explicit integral or floating-point conversion shall not increase the size of

the underlying type of a cvalue expression.
5-0-9 An explicit integral conversion shall not change the signedness of the

underlying type of a cvalue expression.
5-0-10 If the bitwise operators ~ and << are applied to an operand with an

underlying type of unsigned char or unsigned short, the result shall be
immediately cast to the underlying type of the operand.

5-0-13
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they

point to the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer

indirection.
5-2-1 Each operand of a logical && or || shall be a postfix - expression.
5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a derived

class by means of dynamic_cast.
5-2-5 A cast shall not remove any const or volatile qualification from the type of a

pointer or reference.
5-2-6 A cast shall not convert a pointer to a function to any other pointer type,

including a pointer to function type.
5-2-7 An object with pointer type shall not be converted to an unrelated pointer

type, either directly or indirectly.
5-2-8 An object with integer type or pointer to void type shall not be converted to an

object with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.

2 Coding Rule Sets and Concepts

2-66

MISRA C++ Rule Description

5-2-11 The comma operator, && operator and the || operator shall not be
overloaded.

5-3-2 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

5-3-3 The unary & operator shall not be overloaded.
5-18-1 The comma operator shall not be used.
6-2-1 Assignment operators shall not be used in sub-expressions.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for

equality or inequality.
6-3-1 The statement forming the body of a switch, while, do ... while or for

statement shall be a compound statement.
6-4-2 All if ... else if constructs shall be terminated with an else clause.
6-4-6 The final clause of a switch statement shall be the default-clause.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating

type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-

counter shall only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n

remains constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block,

or in a block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function

body.
6-6-4 For any iteration statement there shall be no more than one break or goto

statement used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.
7-5-2 The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.

 Software Quality Objective Subsets (C++)

2-67

MISRA C++ Rule Description

7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
8-4-3 All exit paths from a function with non- void return type shall have an

explicit return statement with an expression.
8-4-4 A function identifier shall either be used to call the function or it shall be

preceded by &.
8-5-2 Braces shall be used to indicate and match the structure in the non- zero

initialization of arrays and structures.
8-5-3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same

hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each

path through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is

itself declared as pure virtual.
11-0-1 Member data in non- POD class types shall be private.
12-1-1 An object's dynamic type shall not be used from the body of its constructor or

destructor.
12-8-2 The copy assignment operator shall be declared protected or private in an

abstract class.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a

switch statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a

catch handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.

2 Coding Rule Sets and Concepts

2-68

MISRA C++ Rule Description

15-3-6 Where multiple handlers are provided in a single try-catch statement or
function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations
of the same function (in other translation units) shall be declared with the
same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the

function shall only be capable of throwing exceptions of the indicated type(s).
16-0-5 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
16-0-6 In the definition of a function-like macro, each instance of a parameter shall

be enclosed in parentheses, unless it is used as the operand of # or ##.
16-0-7 Undefined macro identifiers shall not be used in #if or #elif preprocessor

directives, except as operands to the defined operator.
16-2-2 C++ macros shall only be used for: include guards, type qualifiers, or storage

class specifiers.
16-3-1 There shall be at most one occurrence of the # or ## operators in a single

macro definition.
18-4-1 Dynamic heap memory allocation shall not be used.

 MISRA C++ Coding Rules

2-69

MISRA C++ Coding Rules

In this section...

“Supported MISRA C++ Coding Rules” on page 2-69
“Unsupported MISRA C++ Rules” on page 2-88

Supported MISRA C++ Coding Rules

• “Language Independent Issues” on page 2-70
• “General” on page 2-70
• “Lexical Conventions” on page 2-70
• “Basic Concepts” on page 2-72
• “Standard Conversions” on page 2-73
• “Expressions” on page 2-73
• “Statements” on page 2-77
• “Declarations” on page 2-79
• “Declarators” on page 2-80
• “Classes” on page 2-81
• “Derived Classes” on page 2-82
• “Member Access Control” on page 2-82
• “Special Member Functions” on page 2-82
• “Templates” on page 2-83
• “Exception Handling” on page 2-84
• “Preprocessing Directives” on page 2-85
• “Library Introduction” on page 2-87
• “Language Support Library” on page 2-87
• “Diagnostic Library” on page 2-87
• “Input/output Library” on page 2-88

2 Coding Rule Sets and Concepts

2-70

Language Independent Issues

N. MISRA Definition Polyspace Specification

0-1-1 A project shall not contain unreachable
code.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

0-1-2 A project shall not contain infeasible paths.
0-1-7 The value returned by a function having

a non- void return type that is not an
overloaded operator shall always be used.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

0-1-10 Every defined function shall be called at
least once.

Detects if static functions are not called
in their translation unit. Other cases are
detected by the software.

General

N. MISRA Definition Polyspace Specification

1-0-1 All code shall conform to ISO/IEC
14882:2003 "The C++ Standard
Incorporating Technical Corrigendum 1".

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

Lexical Conventions

N. MISRA Definition Polyspace Specification

2-3-1 Trigraphs shall not be used.
2-5-1 Digraphs should not be used.
2-7-1 The character sequence /* shall not be used

within a C-style comment.
This rule cannot be annotated in the source
code.

2-10-1 Different identifiers shall be
typographically unambiguous.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

2-10-2 Identifiers declared in an inner scope shall
not hide an identifier declared in an outer
scope.

No detection for logical scopes: fields or
member functions hiding outer scopes
identifiers or hiding ancestors members.

 MISRA C++ Coding Rules

2-71

N. MISRA Definition Polyspace Specification

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

2-10-3 A typedef name (including qualification, if
any) shall be a unique identifier.

No detection across namespaces.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

2-10-4 A class, union or enum name (including
qualification, if any) shall be a unique
identifier.

No detection across namespaces.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

2-10-5 The identifier name of a non-member object
or function with static storage duration
should not be reused.

For functions the detection is only on the
definition where there is a declaration.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

2-10-6 If an identifier refers to a type, it shall not
also refer to an object or a function in the
same scope.

If the identifier is a function and the
function is both declared and defined then
the violation is reported only once.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

2-13-1 Only those escape sequences that are
defined in ISO/IEC 14882:2003 shall be
used.

2-13-2 Octal constants (other than zero) and octal
escape sequences (other than "\0") shall not
be used.

2-13-3 A "U" suffix shall be applied to all octal or
hexadecimal integer literals of unsigned
type.

2-13-4 Literal suffixes shall be upper case.

2 Coding Rule Sets and Concepts

2-72

N. MISRA Definition Polyspace Specification

2-13-5 Narrow and wide string literals shall not be
concatenated.

Basic Concepts

N. MISRA Definition Polyspace Specification

3-1-1 It shall be possible to include any header
file in multiple translation units without
violating the One Definition Rule.

3-1-2 Functions shall not be declared at block
scope.

3-1-3 When an array is declared, its size shall
either be stated explicitly or defined
implicitly by initialization.

3-2-1 All declarations of an object or function
shall have compatible types.

3-2-2 The One Definition Rule shall not be
violated.

Report type, template, and inline function
defined in source file

3-2-3 A type, object or function that is used in
multiple translation units shall be declared
in one and only one file.

3-2-4 An identifier with external linkage shall
have exactly one definition.

3-3-1 Objects or functions with external linkage
shall be declared in a header file.

3-3-2 If a function has internal linkage then all
re-declarations shall include the static
storage class specifier.

3-4-1 An identifier declared to be an object
or type shall be defined in a block that
minimizes its visibility.

3-9-1 The types used for an object, a function
return type, or a function parameter

Comparison is done between current
declaration and last seen declaration.

 MISRA C++ Coding Rules

2-73

N. MISRA Definition Polyspace Specification

shall be token-for-token identical in all
declarations and re-declarations.

3-9-2 typedefs that indicate size and signedness
should be used in place of the basic
numerical types.

No detection in non-instantiated templates.

3-9-3 The underlying bit representations of
floating-point values shall not be used.

Standard Conversions

N. MISRA Definition Polyspace Specification

4-5-1 Expressions with type bool shall not be
used as operands to built-in operators other
than the assignment operator =, the logical
operators &&, ||, !, the equality operators
== and !=, the unary & operator, and the
conditional operator.

4-5-2 Expressions with type enum shall not be
used as operands to built- in operators
other than the subscript operator [],
the assignment operator =, the equality
operators == and !=, the unary & operator,
and the relational operators <, <=, >, >=.

4-5-3 Expressions with type (plain) char and
wchar_t shall not be used as operands
to built-in operators other than the
assignment operator =, the equality
operators == and !=, and the unary &
operator. N

Expressions

N. MISRA Definition Polyspace Specification

5-0-1 The value of an expression shall be the
same under any order of evaluation that
the standard permits.

2 Coding Rule Sets and Concepts

2-74

N. MISRA Definition Polyspace Specification

5-0-2 Limited dependence should be placed on C+
+ operator precedence rules in expressions.

5-0-3 A cvalue expression shall not be implicitly
converted to a different underlying type.

Assumes that ptrdiff_t is signed integer

5-0-4 An implicit integral conversion shall not
change the signedness of the underlying
type.

Assumes that ptrdiff_t is signed integer

If the conversion is to a narrower integer
with a different sign then MISRA C++ 5-0-4
takes precedence over MISRA C++ 5-0-6.

5-0-5 There shall be no implicit floating-integral
conversions.

This rule takes precedence over 5-0-4 and
5-0-6 if they apply at the same time.

5-0-6 An implicit integral or floating-point
conversion shall not reduce the size of the
underlying type.

If the conversion is to a narrower integer
with a different sign then MISRA C++ 5-0-4
takes precedence over MISRA C++ 5-0-6.

5-0-7 There shall be no explicit floating-integral
conversions of a cvalue expression.

5-0-8 An explicit integral or floating-point
conversion shall not increase the size of the
underlying type of a cvalue expression.

5-0-9 An explicit integral conversion shall not
change the signedness of the underlying
type of a cvalue expression.

5-0-10 If the bitwise operators ~ and << are
applied to an operand with an underlying
type of unsigned char or unsigned short,
the result shall be immediately cast to the
underlying type of the operand.

5-0-11 The plain char type shall only be used for
the storage and use of character values.

For numeric data, use a type which has
explicit signedness.

5-0-12 Signed char and unsigned char type shall
only be used for the storage and use of
numeric values.

5-0-14 The first operand of a conditional-operator
shall have type bool.

 MISRA C++ Coding Rules

2-75

N. MISRA Definition Polyspace Specification

5-0-15 Array indexing shall be the only form of
pointer arithmetic.

Warning on operations on pointers. (p+I,
I+p and p-I, where p is a pointer and I an
integer, p[i] accepted).

5-0-18 >, >=, <, <= shall not be applied to objects of
pointer type, except where they point to the
same array.

Report when relational operator are used
on pointers types (casts ignored).

5-0-19 The declaration of objects shall contain no
more than two levels of pointer indirection.

5-0-20 Non-constant operands to a binary bitwise
operator shall have the same underlying
type.

5-0-21 Bitwise operators shall only be applied to
operands of unsigned underlying type.

5-2-1 Each operand of a logical && or || shall be
a postfix - expression.

During preprocessing, violations of this
rule are detected on the expressions
in #if directives. Allowed exception on
associativity (a && b && c), (a || b || c).

5-2-2 A pointer to a virtual base class shall only
be cast to a pointer to a derived class by
means of dynamic_cast.

5-2-3 Casts from a base class to a derived class
should not be performed on polymorphic
types.

5-2-4 C-style casts (other than void casts) and
functional notation casts (other than
explicit constructor calls) shall not be used.

5-2-5 A cast shall not remove any const or
volatile qualification from the type of a
pointer or reference.

5-2-6 A cast shall not convert a pointer to
a function to any other pointer type,
including a pointer to function type.

No violation if pointer types of operand and
target are identical.

2 Coding Rule Sets and Concepts

2-76

N. MISRA Definition Polyspace Specification

5-2-7 An object with pointer type shall not be
converted to an unrelated pointer type,
either directly or indirectly.

"Extended to all pointer conversions
including between pointer to struct object
and pointer to type of the first member
of the struct type. Indirect conversions
through non-pointer type (e.g. int) are not
detected."

5-2-8 An object with integer type or pointer to
void type shall not be converted to an object
with pointer type.

Exception on zero constants. Objects with
pointer type include objects with pointer to
function type.

5-2-9 A cast should not convert a pointer type to
an integral type.

5-2-10 The increment (++) and decrement (--)
operators should not be mixed with other
operators in an expression.

5-2-11 The comma operator, && operator and the
|| operator shall not be overloaded.

5-2-12 An identifier with array type passed as
a function argument shall not decay to a
pointer.

5-3-1 Each operand of the ! operator, the logical
&& or the logical || operators shall have
type bool.

5-3-2 The unary minus operator shall not be
applied to an expression whose underlying
type is unsigned.

5-3-3 The unary & operator shall not be
overloaded.

5-3-4 Evaluation of the operand to the sizeof
operator shall not contain side effects.

No warning on volatile accesses and
function calls

5-8-1 The right hand operand of a shift operator
shall lie between zero and one less than the
width in bits of the underlying type of the
left hand operand.

 MISRA C++ Coding Rules

2-77

N. MISRA Definition Polyspace Specification

5-14-1 The right hand operand of a logical && or
|| operator shall not contain side effects.

No warning on volatile accesses and
function calls.

5-18-1 The comma operator shall not be used.
5-19-1 Evaluation of constant unsigned integer

expressions should not lead to wrap-
around.

Statements

N. MISRA Definition Polyspace Specification

6-2-1 Assignment operators shall not be used in
sub-expressions.

6-2-2 Floating-point expressions shall not be
directly or indirectly tested for equality or
inequality.

6-2-3 Before preprocessing, a null statement
shall only occur on a line by itself; it may be
followed by a comment, provided that the
first character following the null statement
is a white - space character.

6-3-1 The statement forming the body of a
switch, while, do ... while or for statement
shall be a compound statement.

6-4-1 An if (condition) construct shall be
followed by a compound statement. The
else keyword shall be followed by either
a compound statement, or another if
statement.

6-4-2 All if ... else if constructs shall be
terminated with an else clause.

Also detects cases where the last if is in
the block of the last else (same behavior
as JSF, stricter than MISRA C).

Example: "if … else { if …{}}" raises the
rule

2 Coding Rule Sets and Concepts

2-78

N. MISRA Definition Polyspace Specification

6-4-3 A switch statement shall be a well-formed
switch statement.

Return statements are considered as jump
statements.

6-4-4 A switch-label shall only be used when the
most closely-enclosing compound statement
is the body of a switch statement.

6-4-5 An unconditional throw or break statement
shall terminate every non - empty switch-
clause.

6-4-6 The final clause of a switch statement shall
be the default-clause.

6-4-7 The condition of a switch statement shall
not have bool type.

6-4-8 Every switch statement shall have at least
one case-clause.

6-5-1 A for loop shall contain a single loop-
counter which shall not have floating type.

6-5-2 If loop-counter is not modified by -- or +
+, then, within condition, the loop-counter
shall only be used as an operand to <=, <, >
or >=.

6-5-3 The loop-counter shall not be modified
within condition or statement.

Detect only direct assignments if for_index
is known (see 6-5-1).

6-5-4 The loop-counter shall be modified by one
of: --, ++, -=n, or +=n ; where n remains
constant for the duration of the loop.

6-5-5 A loop-control-variable other than the
loop-counter shall not be modified within
condition or expression.

6-5-6 A loop-control-variable other than the loop-
counter which is modified in statement
shall have type bool.

 MISRA C++ Coding Rules

2-79

N. MISRA Definition Polyspace Specification

6-6-1 Any label referenced by a goto statement
shall be declared in the same block, or in a
block enclosing the goto statement.

6-6-2 The goto statement shall jump to a label
declared later in the same function body.

6-6-3 The continue statement shall only be used
within a well-formed for loop.

Assumes 6.5.1 to 6.5.6: so it is implemented
only for supported 6_5_x rules.

6-6-4 For any iteration statement there shall be
no more than one break or goto statement
used for loop termination.

6-6-5 A function shall have a single point of exit
at the end of the function.

At most one return not necessarily as last
statement for void functions.

Declarations

N. MISRA Definition Polyspace Specification

7-3-1 The global namespace shall only contain
main, namespace declarations and extern
"C" declarations.

7-3-2 The identifier main shall not be used for
a function other than the global function
main.

7-3-3 There shall be no unnamed namespaces in
header files.

7-3-4 using-directives shall not be used.
7-3-5 Multiple declarations for an identifier in

the same namespace shall not straddle a
using-declaration for that identifier.

7-3-6 using-directives and using-declarations
(excluding class scope or function scope
using-declarations) shall not be used in
header files.

2 Coding Rule Sets and Concepts

2-80

N. MISRA Definition Polyspace Specification

7-4-2 Assembler instructions shall only be
introduced using the asm declaration.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

7-4-3 Assembly language shall be encapsulated
and isolated.

7-5-1 A function shall not return a reference or a
pointer to an automatic variable (including
parameters), defined within the function.

7-5-2 The address of an object with automatic
storage shall not be assigned to another
object that may persist after the first object
has ceased to exist.

7-5-3 A function shall not return a reference or
a pointer to a parameter that is passed by
reference or const reference.

7-5-4 Functions should not call themselves,
either directly or indirectly.

Declarators

N. MISRA Definition Polyspace Specification

8-0-1 An init-declarator-list or a member-
declarator-list shall consist of a single
init-declarator or member-declarator
respectively.

8-3-1 Parameters in an overriding virtual
function shall either use the same default
arguments as the function they override,
or else shall not specify any default
arguments.

8-4-1 Functions shall not be defined using the
ellipsis notation.

8-4-2 The identifiers used for the parameters
in a re-declaration of a function shall be
identical to those in the declaration.

 MISRA C++ Coding Rules

2-81

N. MISRA Definition Polyspace Specification

8-4-3 All exit paths from a function with non-
void return type shall have an explicit
return statement with an expression.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

8-4-4 A function identifier shall either be used to
call the function or it shall be preceded by
&.

8-5-1 All variables shall have a defined value
before they are used.

Non-initialized variable in results and error
messages for obvious cases

8-5-2 Braces shall be used to indicate and match
the structure in the non- zero initialization
of arrays and structures.

8-5-3 In an enumerator list, the = construct shall
not be used to explicitly initialize members
other than the first, unless all items are
explicitly initialized.

Classes

N. MISRA Definition Polyspace Specification

9-3-1 const member functions shall not return
non-const pointers or references to class-
data.

Class-data for a class is restricted to all
non-static member data.

9-3-2 Member functions shall not return non-
const handles to class-data.

Class-data for a class is restricted to all
non-static member data.

9-5-1 Unions shall not be used.
9-6-2 Bit-fields shall be either bool type or an

explicitly unsigned or signed integral type.

9-6-3 Bit-fields shall not have enum type.
9-6-4 Named bit-fields with signed integer type

shall have a length of more than one bit.

2 Coding Rule Sets and Concepts

2-82

Derived Classes

N. MISRA Definition Polyspace Specification

10-1-1 Classes should not be derived from virtual
bases.

10-1-2 A base class shall only be declared virtual if
it is used in a diamond hierarchy.

Assumes 10.1.1 not required

10-1-3 An accessible base class shall not be
both virtual and nonvirtual in the same
hierarchy.

10-2-1 All accessible entity names within a
multiple inheritance hierarchy should be
unique.

No detection between entities of different
kinds (member functions against data
members, …).

10-3-1 There shall be no more than one definition
of each virtual function on each path
through the inheritance hierarchy.

Member functions that are virtual by
inheritance are also detected.

10-3-2 Each overriding virtual function shall be
declared with the virtual keyword.

10-3-3 A virtual function shall only be overridden
by a pure virtual function if it is itself
declared as pure virtual.

Member Access Control

N. MISRA Definition Polyspace Specification

11-0-1 Member data in non- POD class types shall
be private.

Special Member Functions

N. MISRA Definition Polyspace Specification

12-1-1 An object's dynamic type shall not be
used from the body of its constructor or
destructor.

12-1-2 All constructors of a class should explicitly
call a constructor for all of its immediate
base classes and all virtual base classes.

 MISRA C++ Coding Rules

2-83

N. MISRA Definition Polyspace Specification

12-1-3 All constructors that are callable with a
single argument of fundamental type shall
be declared explicit.

12-8-1 A copy constructor shall only initialize its
base classes and the non- static members of
the class of which it is a member.

12-8-2 The copy assignment operator shall be
declared protected or private in an abstract
class.

Templates

N. MISRA Definition Polyspace Specification

14-5-2 A copy constructor shall be declared
when there is a template constructor
with a single parameter that is a generic
parameter.

14-5-3 A copy assignment operator shall be
declared when there is a template
assignment operator with a parameter that
is a generic parameter.

14-6-1 In a class template with a dependent
base, any name that may be found in that
dependent base shall be referred to using a
qualified-id or this->

14-6-2 The function chosen by overload resolution
shall resolve to a function declared
previously in the translation unit.

14-7-3 All partial and explicit specializations for
a template shall be declared in the same
file as the declaration of their primary
template.

14-8-1 Overloaded function templates shall not be
explicitly specialized.

All specializations of overloaded templates
are rejected even if overloading occurs after
the call.

2 Coding Rule Sets and Concepts

2-84

N. MISRA Definition Polyspace Specification

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

14-8-2 The viable function set for a function
call should either contain no function
specializations, or only contain function
specializations.

Exception Handling

N. MISRA Definition Polyspace Specification

15-0-2 An exception object should not have pointer
type.

NULL not detected (see 15-1-2).

15-0-3 Control shall not be transferred into a
try or catch block using a goto or a switch
statement.

15-1-2 NULL shall not be thrown explicitly.
15-1-3 An empty throw (throw;) shall only be used

in the compound- statement of a catch
handler.

15-3-2 There should be at least one exception
handler to catch all otherwise unhandled
exceptions.

Detect that there is no try/catch in the
main and that the catch does not handle all
exceptions. Not detected if no "main".

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

15-3-3 Handlers of a function-try-block
implementation of a class constructor or
destructor shall not reference non-static
members from this class or its bases.

15-3-5 A class type exception shall always be
caught by reference.

15-3-6 Where multiple handlers are provided in
a single try-catch statement or function-
try-block for a derived class and some or all

 MISRA C++ Coding Rules

2-85

N. MISRA Definition Polyspace Specification

of its bases, the handlers shall be ordered
most-derived to base class.

15-3-7 Where multiple handlers are provided in a
single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall
occur last.

15-4-1 If a function is declared with an exception-
specification, then all declarations of the
same function (in other translation units)
shall be declared with the same set of type-
ids.

15-5-1 A class destructor shall not exit with an
exception.

Limit detection to throw and catch that are
internals to the destructor; rethrows are
partially processed; no detections in nested
handlers.

15-5-2 Where a function's declaration includes an
exception-specification, the function shall
only be capable of throwing exceptions of
the indicated type(s).

Limit detection to throw that are internals
to the function; rethrows are partially
processed; no detections in nested handlers.

Preprocessing Directives

N. MISRA Definition Polyspace Specification

16-0-1 #include directives in a file shall only be
preceded by other preprocessor directives or
comments.

16-0-2 Macros shall only be #define 'd or #undef 'd
in the global namespace.

16-0-3 #undef shall not be used.
16-0-4 Function-like macros shall not be defined.
16-0-5 Arguments to a function-like macro

shall not contain tokens that look like
preprocessing directives.

16-0-6 In the definition of a function-like macro,
each instance of a parameter shall be

2 Coding Rule Sets and Concepts

2-86

N. MISRA Definition Polyspace Specification

enclosed in parentheses, unless it is used as
the operand of # or ##.

16-0-7 Undefined macro identifiers shall not be
used in #if or #elif preprocessor directives,
except as operands to the defined operator.

16-0-8 If the # token appears as the first token on
a line, then it shall be immediately followed
by a preprocessing token.

16-1-1 The defined preprocessor operator shall
only be used in one of the two standard
forms.

16-1-2 All #else, #elif and #endif preprocessor
directives shall reside in the same file as
the #if or #ifdef directive to which they are
related.

16-2-1 The preprocessor shall only be used for file
inclusion and include guards.

The rule is raised for #ifdef/#define if the
file is not an include file.

16-2-2 C++ macros shall only be used for: include
guards, type qualifiers, or storage class
specifiers.

16-2-3 Include guards shall be provided.
16-2-4 The ', ", /* or // characters shall not occur in

a header file name.

16-2-5 The \ character should not occur in a
header file name.

16-2-6 The #include directive shall be followed by
either a <filename> or "filename" sequence.

16-3-1 There shall be at most one occurrence of
the # or ## operators in a single macro
definition.

16-3-2 The # and ## operators should not be used.

 MISRA C++ Coding Rules

2-87

Library Introduction

N. MISRA Definition Polyspace Specification

17-0-1 Reserved identifiers, macros and functions
in the standard library shall not be defined,
redefined or undefined.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

17-0-2 The names of standard library macros and
objects shall not be reused.

17-0-5 The setjmp macro and the longjmp function
shall not be used.

Language Support Library

N. MISRA Definition Polyspace Specification

18-0-1 The C library shall not be used.
18-0-2 The library functions atof, atoi and atol

from library <cstdlib> shall not be used.

18-0-3 The library functions abort, exit, getenv
and system from library <cstdlib> shall not
be used.

The option -dialect iso must be used to
detect violations, for example, exit.

18-0-4 The time handling functions of library
<ctime> shall not be used.

18-0-5 The unbounded functions of library
<cstring> shall not be used.

18-2-1 The macro offsetof shall not be used.
18-4-1 Dynamic heap memory allocation shall not

be used.

18-7-1 The signal handling facilities of <csignal>
shall not be used.

Diagnostic Library

N. MISRA Definition Polyspace Specification

19-3-1 The error indicator errno shall not be used.

2 Coding Rule Sets and Concepts

2-88

Input/output Library

N. MISRA Definition Polyspace Specification

27-0-1 The stream input/output library <cstdio>
shall not be used.

Unsupported MISRA C++ Rules

• “Language Independent Issues” on page 2-88
• “General” on page 2-89
• “Lexical Conventions” on page 2-90
• “Standard Conversions” on page 2-90
• “Expressions” on page 2-90
• “Declarations” on page 2-91
• “Classes” on page 2-91
• “Templates” on page 2-91
• “Exception Handling” on page 2-92
• “Preprocessing Directives” on page 2-92
• “Library Introduction” on page 2-93

Language Independent Issues

N. MISRA Definition Polyspace Specification

0–1–3 A project shall not contain unused
variables.

0-1-4 A project shall not contain non-volatile
POD variables having only one use.

0-1-5 A project shall not contain unused type
declarations.

0-1-6 A project shall not contain instances of non-
volatile variables being given values that
are never subsequently used.

 MISRA C++ Coding Rules

2-89

N. MISRA Definition Polyspace Specification

0-1-8 All functions with void return type shall
have external side effects.

0-1-9 There shall be no dead code. Not checked by the coding rules checker.
Can be enforced through detection of dead
code during analysis.

0-1-11 There shall be no unused parameters
(named or unnamed) in nonvirtual
functions.

0-1-12 There shall be no unused parameters
(named or unnamed) in the set of
parameters for a virtual function and all
the functions that override it.

0-2-1 An object shall not be assigned to an
overlapping object.

0-3-1 Minimization of run-time failures shall be
ensured by the use of at least one of: (a)
static analysis tools/techniques; (b) dynamic
analysis tools/techniques; (c) explicit coding
of checks to handle run-time faults.

0-3-2 If a function generates error information,
then that error information shall be tested.

0-4-1 Use of scaled-integer or fixed-point
arithmetic shall be documented.

0-4-2 Use of floating-point arithmetic shall be
documented.

0-4-3 Floating-point implementations shall
comply with a defined floating-point
standard.

General

N. MISRA Definition Polyspace Specification

1-0-2 Multiple compilers shall only be used if
they have a common, defined interface.

2 Coding Rule Sets and Concepts

2-90

N. MISRA Definition Polyspace Specification

1-0-3 The implementation of integer division in
the chosen compiler shall be determined
and documented.

Lexical Conventions

N. MISRA Definition Polyspace Specification

2-2-1 The character set and the corresponding
encoding shall be documented.

2-7-2 Sections of code shall not be "commented
out" using C-style comments.

2-7-3 Sections of code should not be "commented
out" using C++ comments.

Standard Conversions

N. MISRA Definition Polyspace Specification

4-10-1 ULL shall not be used as an integer value.
4-10-2 Literal zero (0) shall not be used as the

null-pointer-constant.

Expressions

N. MISRA Definition Polyspace Specification

5-0-13 The condition of an if-statement and the
condition of an iteration- statement shall
have type bool.

5-0-16 A pointer operand and any pointer
resulting from pointer arithmetic using
that operand shall both address elements of
the same array.

5-0-17 Subtraction between pointers shall only be
applied to pointers that address elements of
the same array.

 MISRA C++ Coding Rules

2-91

N. MISRA Definition Polyspace Specification

5-17-1 The semantic equivalence between a binary
operator and its assignment operator form
shall be preserved.

Declarations

N. MISRA Definition Polyspace Specification

7-1-1 A variable which is not modified shall be
const qualified.

7-1-2 A pointer or reference parameter in a
function shall be declared as pointer
to const or reference to const if the
corresponding object is not modified.

7-2-1 An expression with enum underlying type
shall only have values corresponding to the
enumerators of the enumeration.

7-4-1 All usage of assembler shall be
documented.

Classes

N. MISRA Definition Polyspace Specification

9-3-3 If a member function can be made static
then it shall be made static, otherwise if
it can be made const then it shall be made
const.

9-6-1 When the absolute positioning of bits
representing a bit-field is required, then the
behavior and packing of bit-fields shall be
documented.

Templates

N. MISRA Definition Polyspace Specification

14-5-1 A non-member generic function shall only
be declared in a namespace that is not an
associated namespace.

2 Coding Rule Sets and Concepts

2-92

N. MISRA Definition Polyspace Specification

14-7-1 All class templates, function templates,
class template member functions and
class template static members shall be
instantiated at least once.

14-7-2 For any given template specialization,
an explicit instantiation of the template
with the template-arguments used in the
specialization shall not render the program
ill-formed.

Exception Handling

N. MISRA Definition Polyspace Specification

15-0-1 Exceptions shall only be used for error
handling.

15-1-1 The assignment-expression of a throw
statement shall not itself cause an
exception to be thrown.

15-3-1 Exceptions shall be raised only after start-
up and before termination of the program.

15-3-4 Each exception explicitly thrown in the
code shall have a handler of a compatible
type in all call paths that could lead to that
point.

15-5-3 The terminate() function shall not be called
implicitly.

Preprocessing Directives

N. MISRA Definition Polyspace Specification

16-6-1 All uses of the #pragma directive shall be
documented.

 MISRA C++ Coding Rules

2-93

Library Introduction

N. MISRA Definition Polyspace Specification

17-0-3 The names of standard library functions
shall not be overridden.

17-0-4 All library code shall conform to MISRA C+
+.

2 Coding Rule Sets and Concepts

2-94

Polyspace JSF C++ Checker

The Polyspace JSF C++ checker helps you comply with the Joint Strike Fighter® Air
Vehicle C++ coding standards (JSF++). These coding standards were developed by
Lockheed Martin® for the Joint Strike Fighter program. They are designed to improve
the robustness of C++ code, and improve maintainability.

5

When JSF++ rules are violated, the Polyspace JSF C++ checker enables Polyspace
software to provide messages with information about the rule violations. Most messages
are reported during the compile phase of an analysis.

Note: The Polyspace JSF C++ checker is based on JSF++:2005. For more information on
these coding standards, see Joint Strike Fighter Air Vehicle C++ Coding Standards for
the System Development and Demonstration Program.

5. JSF and Joint Strike Fighter are registered trademarks of Lockheed Martin.

http://www.jsf.mil/downloads/documents/JSF_AV_C++_Coding_Standards_Rev_C.doc
http://www.jsf.mil/downloads/documents/JSF_AV_C++_Coding_Standards_Rev_C.doc

 JSF C++ Coding Rules

2-95

JSF C++ Coding Rules

In this section...

“Supported JSF C++ Coding Rules” on page 2-95
“Unsupported JSF++ Rules” on page 2-118

Supported JSF C++ Coding Rules

• “Code Size and Complexity” on page 2-96
• “Environment” on page 2-96
• “Libraries” on page 2-97
• “Pre-Processing Directives” on page 2-97
• “Header Files” on page 2-99
• “Style” on page 2-99
• “Classes” on page 2-103
• “Namespaces” on page 2-107
• “Templates” on page 2-107
• “Functions” on page 2-107
• “Comments” on page 2-108
• “Declarations and Definitions” on page 2-108
• “Initialization” on page 2-109
• “Types” on page 2-110
• “Constants” on page 2-110
• “Variables” on page 2-111
• “Unions and Bit Fields” on page 2-111
• “Operators” on page 2-111
• “Pointers and References” on page 2-112
• “Type Conversions” on page 2-113
• “Flow Control Standards” on page 2-115
• “Expressions” on page 2-116
• “Memory Allocation” on page 2-117

2 Coding Rule Sets and Concepts

2-96

• “Fault Handling” on page 2-117
• “Portable Code” on page 2-118

Code Size and Complexity

N. JSF++ Definition Polyspace Specification

1 Any one function (or method) will contain no
more than 200 logical source lines of code (L-
SLOCs).

Message in report file:

<function name> has <num> logical source
lines of code.

3 All functions shall have a cyclomatic
complexity number of 20 or less.

Message in report file:

<function name> has cyclomatic
complexity number equal to <num>.

Environment

N. JSF++ Definition Polyspace Specification

8 All code shall conform to ISO/IEC
14882:2002(E) standard C++.

Reports the compilation error message

9 Only those characters specified in the C++
basic source character set will be used.

11 Trigraphs will not be used.
12 The following digraphs will not be used: <%,

%>, <:, :>, %:, %:%:.
Message in report file:

The following digraph will not be used:
<digraph>.

Reports the digraph. If the rule level is set to
warning, the digraph will be allowed even if
it is not supported in -dialect iso.

13 Multi-byte characters and wide string
literals will not be used.

Report L'c', L"string", and use of
wchar_t.

14 Literal suffixes shall use uppercase rather
than lowercase letters.

15 Provision shall be made for run-time
checking (defensive programming).

Done with checks in the software.

 JSF C++ Coding Rules

2-97

Libraries

N. JSF++ Definition Polyspace Specification

17 The error indicator errno shall not be
used.

errno should not be used as a macro or a
global with external "C" linkage.

18 The macro offsetof, in library
<stddef.h>, shall not be used.

offsetof should not be used as a macro or
a global with external "C" linkage.

19 <locale.h> and the setlocale function
shall not be used.

setlocale and localeconv should not be
used as a macro or a global with external "C"
linkage.

20 The setjmp macro and the longjmp
function shall not be used.

setjmp and longjmp should not be used
as a macro or a global with external "C"
linkage.

21 The signal handling facilities of
<signal.h> shall not be used.

signal and raise should not be used as a
macro or a global with external "C" linkage.

22 The input/output library <stdio.h> shall
not be used.

all standard functions of <stdio.h> should
not be used as a macro or a global with
external "C" linkage.

23 The library functions atof, atoi and atol
from library <stdlib.h> shall not be used.

atof, atoi and atol should not be used
as a macro or a global with external "C"
linkage.

24 The library functions abort, exit, getenv
and system from library <stdlib.h> shall
not be used.

abort, exit, getenv and system should
not be used as a macro or a global with
external "C" linkage.

25 The time handling functions of library
<time.h> shall not be used.

clock, difftime, mktime, asctime,
ctime, gmtime, localtime and strftime
should not be used as a macro or a global
with external "C" linkage.

Pre-Processing Directives

N. JSF++ Definition Polyspace Specification

26 Only the following preprocessor directives
shall be used: #ifndef, #define, #endif,
#include.

2 Coding Rule Sets and Concepts

2-98

N. JSF++ Definition Polyspace Specification

27 #ifndef, #define and #endif will be
used to prevent multiple inclusions of
the same header file. Other techniques to
prevent the multiple inclusions of header
files will not be used.

Detects the patterns #if !defined,
#pragma once, #ifdef, and missing
#define.

28 The #ifndef and #endif preprocessor
directives will only be used as defined in AV
Rule 27 to prevent multiple inclusions of the
same header file.

Detects any use that does not comply with
AV Rule 27. Assuming 35/27 is not violated,
reports only #ifndef.

29 The #define preprocessor directive shall
not be used to create inline macros. Inline
functions shall be used instead.

Rule is split into two parts: the definition of
a macro function (29.def) and the call of a
macrofunction (29.use).

Messages in report file:

• 29.1 : The #define preprocessor
directive shall not be used to create inline
macros.

• 29.2 : Inline functions shall be used
instead of inline macros.

30 The #define preprocessor directive shall
not be used to define constant values.
Instead, the const qualifier shall be
applied to variable declarations to specify
constant values.

Reports #define of simple constants.

31 The #define preprocessor directive will
only be used as part of the technique to
prevent multiple inclusions of the same
header file.

Detects use of #define that are not used to
guard for multiple inclusion, assuming that
rules 35 and 27 are not violated.

32 The #include preprocessor directive will
only be used to include header (*.h) files.

 JSF C++ Coding Rules

2-99

Header Files

N. JSF++ Definition Polyspace Specification

33 The #include directive shall use the
<filename.h> notation to include header
files.

35 A header file will contain a mechanism that
prevents multiple inclusions of itself.

39 Header files (*.h) will not contain non-
const variable definitions or function
definitions.

Reports definitions of global variables /
function in header.

Style

N. JSF++ Definition Polyspace Specification

40 Every implementation file shall include the
header files that uniquely define the inline
functions, types, and templates used.

Reports when type, template, or inline
function is defined in source file.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

41 Source lines will be kept to a length of 120
characters or less.

42 Each expression-statement will be on a
separate line.

Reports when two consecutive expression
statements are on the same line.

43 Tabs should be avoided.
44 All indentations will be at least two spaces

and be consistent within the same source
file.

Reports when a statement indentation
is not at least two spaces more than the
statement containing it. Does not report
bad indentation between opening braces
following if/else, do/while, for, and while
statements. NB: in final release it will
accept any indentation

46 User-specified identifiers (internal and
external) will not rely on significance of
more than 64 characters.

2 Coding Rule Sets and Concepts

2-100

N. JSF++ Definition Polyspace Specification

47 Identifiers will not begin with the
underscore character '_'.

48 Identifiers will not differ by:

• Only a mixture of case
• The presence/absence of the underscore

character
• The interchange of the letter 'O'; with the

number '0' or the letter 'D'
• The interchange of the letter 'I'; with the

number '1' or the letter 'l'
• The interchange of the letter 'S' with the

number '5'
• The interchange of the letter 'Z' with the

number 2
• The interchange of the letter 'n' with the

letter 'h'

Checked regardless of scope. Not checked
between macros and other identifiers.

Messages in report file:

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp
line l2 column c2) only differ by
the presence/absence of the underscore
character.

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp
line l2 column c2) only differ by a
mixture of case.

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp
line l2 column c2) only differ by
letter O, with the number 0.

50 The first word of the name of a class,
structure, namespace, enumeration, or type
created with typedef will begin with an
uppercase letter. All others letters will be
lowercase.

Messages in report file:

• The first word of the name of a class will
begin with an uppercase letter.

• The first word of the namespace of a class
will begin with an uppercase letter.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

 JSF C++ Coding Rules

2-101

N. JSF++ Definition Polyspace Specification

51 All letters contained in function and
variables names will be composed entirely
of lowercase letters.

Messages in report file:

• All letters contained in variable names
will be composed entirely of lowercase
letters.

• All letters contained in function names
will be composed entirely of lowercase
letters.

52 Identifiers for constant and enumerator
values shall be lowercase.

Messages in report file:

• Identifier for enumerator value shall be
lowercase.

• Identifier for template constant
parameter shall be lowercase.

53 Header files will always have file name
extension of ".h".

.H is allowed if you set the option -dos.

53.1 The following character sequences shall not
appear in header file names: ', \, /*, //, or
".

54 Implementation files will always have a file
name extension of ".cpp".

Not case sensitive if you set the option -dos.

57 The public, protected, and private sections of
a class will be declared in that order.

58 When declaring and defining functions with
more than two parameters, the leading
parenthesis and the first argument will
be written on the same line as the function
name. Each additional argument will
be written on a separate line (with the
closing parenthesis directly after the last
argument).

Detects that two parameters are not on the
same line, The first parameter should be on
the same line as function name. Does not
check for the closing parenthesis.

2 Coding Rule Sets and Concepts

2-102

N. JSF++ Definition Polyspace Specification

59 The statements forming the body of an
if, else if, else, while, do ... while or for
statement shall always be enclosed in
braces, even if the braces form an empty
block.

Messages in report file:

• The statements forming the body of an
if statement shall always be enclosed in
braces.

• The statements forming the body of an
else statement shall always be enclosed
in braces.

• The statements forming the body of a
while statement shall always be enclosed
in braces.

• The statements forming the body of a
do ... while statement shall always be
enclosed in braces.

• The statements forming the body of a for
statement shall always be enclosed in
braces.

60 Braces ("{}") which enclose a block will be
placed in the same column, on separate lines
directly before and after the block.

Detects that statement-block braces should
be in the same columns.

61 Braces ("{}") which enclose a block will
have nothing else on the line except
comments.

62 The dereference operator ‘*’ and the address-
of operator ‘&’ will be directly connected
with the type-specifier.

Reports when there is a space between type
and "*" "&" for variables, parameters and
fields declaration.

 JSF C++ Coding Rules

2-103

N. JSF++ Definition Polyspace Specification

63 Spaces will not be used around ‘.’ or ‘->’, nor
between unary operators and operands.

Reports when the following characters are
not directly connected to a white space:

• .
• ->
• !
• ~
• -
• ++
• —

Note: A violation will be reported for “.” used
in float/double definition.

Classes

N. JSF++ Definition Polyspace Specification

67 Public and protected data should only be
used in structs - not classes.

68 Unneeded implicitly generated member
functions shall be explicitly disallowed.

Reports when default constructor,
assignment operator, copy constructor or
destructor is not declared.

71.1 A class’s virtual functions shall not be
invoked from its destructor or any of its
constructors.

Reports when a constructor or destructor
directly calls a virtual function.

74 Initialization of nonstatic class members
will be performed through the member
initialization list rather than through
assignment in the body of a constructor.

All data should be initialized in the
initialization list except for array. Does not
report that an assignment exists in ctor
body.

Message in report file:

Initialization of nonstatic class members
"<field>" will be performed through the
member initialization list.

2 Coding Rule Sets and Concepts

2-104

N. JSF++ Definition Polyspace Specification

75 Members of the initialization list shall be
listed in the order in which they are declared
in the class.

76 A copy constructor and an assignment
operator shall be declared for classes that
contain pointers to data items or nontrivial
destructors.

Messages in report file:

• no copy constructor and no copy

assign

• no copy constructor

• no copy assign

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

77.1 The definition of a member function
shall not contain default arguments that
produce a signature identical to that of the
implicitly-declared copy constructor for the
corresponding class/structure.

Does not report when an explicit copy
constructor exists.

78 All base classes with a virtual function shall
define a virtual destructor.

79 All resources acquired by a class shall be
released by the class’s destructor.

Reports when the number of “new” called in
a constructor is greater than the number of
“delete” called in its destructor.

Note: A violation is raised even if “new” is
done in a “if/else”.

 JSF C++ Coding Rules

2-105

N. JSF++ Definition Polyspace Specification

81 The assignment operator shall handle self-
assignment correctly

Reports when copy assignment body does
not begin with “if (this != arg)”

A violation is not raised if an empty else
statement follows the if, or the body
contains only a return statement.

A violation is raised when the if statement
is followed by a statement other than the
return statement.

82 An assignment operator shall return a
reference to *this.

The following operators should return
*this on method, and *first_arg on plain
function.

operator=

operator+=

operator-=

operator*=

operator >>=

operator <<=

operator /=

operator %=

operator |=

operator &=

operator ^=

prefix operator++

prefix operator--

Does not report when no return exists.

No special message if type does not match.

Messages in report file:

• An assignment operator shall return a
reference to *this.

• An assignment operator shall return a
reference to its first arg.

2 Coding Rule Sets and Concepts

2-106

N. JSF++ Definition Polyspace Specification

83 An assignment operator shall assign all data
members and bases that affect the class
invariant (a data element representing a
cache, for example, would not need to be
copied).

Reports when a copy assignment does not
assign all data members. In a derived class,
it also reports when a copy assignment does
not call inherited copy assignments.

88 Multiple inheritance shall only be allowed
in the following restricted form: n interfaces
plus m private implementations, plus at most
one protected implementation.

Messages in report file:

• Multiple inheritance on public
implementation shall not be allowed:
<public_base_class> is not an
interface.

• Multiple inheritance on protected
implementation shall not be allowed :
<protected_base_class_1>.

• <protected_base_class_2> are not
interfaces.

88.1 A stateful virtual base shall be explicitly
declared in each derived class that accesses
it.

89 A base class shall not be both virtual and
nonvirtual in the same hierarchy.

94 An inherited nonvirtual function shall not
be redefined in a derived class.

Does not report for destructor.

Message in report file:

Inherited nonvirtual function %s shall not be
redefined in a derived class.

95 An inherited default parameter shall never
be redefined.

96 Arrays shall not be treated
polymorphically.

Reports pointer arithmetic and array like
access on expressions whose pointed type is
used as a base class.

97 Arrays shall not be used in interface. Only to prevent array-to-pointer-decay. Not
checked on private methods

 JSF C++ Coding Rules

2-107

N. JSF++ Definition Polyspace Specification

97.1 Neither operand of an equality operator (==
or !=) shall be a pointer to a virtual member
function.

Reports == and != on pointer to member
function of polymorphic classes (cannot
determine statically if it is virtual or not),
except when one argument is the null
constant.

Namespaces

N. JSF++ Definition Polyspace Specification

98 Every nonlocal name, except main(),
should be placed in some namespace.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

99 Namespaces will not be nested more than
two levels deep.

Templates

N. JSF++ Definition Polyspace Specification

104 A template specialization shall be declared
before its use.

Reports the actual compilation error
message.

Functions

N. JSF++ Definition Polyspace Specification

107 Functions shall always be declared at file
scope.

108 Functions with variable numbers of
arguments shall not be used.

109 A function definition should not be placed in
a class specification unless the function is
intended to be inlined.

Reports when "inline" is not in the definition
of a member function inside the class
definition.

110 Functions with more than 7 arguments will
not be used.

111 A function shall not return a pointer or
reference to a non-static local object.

Simple cases without alias effect detected.

2 Coding Rule Sets and Concepts

2-108

N. JSF++ Definition Polyspace Specification

113 Functions will have a single exit point. Reports first return, or once per function.
114 All exit points of value-returning functions

shall be through return statements.

116 Small, concrete-type arguments (two or
three words in size) should be passed by
value if changes made to formal parameters
should not be reflected in the calling
function.

Report constant parameters references with
sizeof <= 2 * sizeof(int). Does not
report for copy-constructor.

119 Functions shall not call themselves, either
directly or indirectly (i.e. recursion shall not
be allowed).

Direct recursion is reported statically.
Indirect recursion reported through the
software.

Message in report file:

Function <F> shall not call directly itself.
121 Only functions with 1 or 2 statements

should be considered candidates for inline
functions.

Reports inline functions with more than 2
statements.

Comments

N. JSF++ Definition Polyspace Specification

126 Only valid C++ style comments (//) shall be
used.

133 Every source file will be documented with
an introductory comment that provides
information on the file name, its contents,
and any program-required information (e.g.
legal statements, copyright information, etc).

Reports when a file does not begin with two
comment lines.

Note: This rule cannot be annotated in the
source code.

Declarations and Definitions

N. JSF++ Definition Polyspace Specification

135 Identifiers in an inner scope shall not use
the same name as an identifier in an outer
scope, and therefore hide that identifier.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

 JSF C++ Coding Rules

2-109

N. JSF++ Definition Polyspace Specification

136 Declarations should be at the smallest
feasible scope.

Reports when:

• A global variable is used in only one
function.

• A local variable is not used in a
statement (expr, return, init …) of
the same level of its declaration (in the
same block) or is not used in two sub-
statements of its declaration.

Note:

• Non-used variables are reported.

• Initializations at definition are ignored
(not considered an access)

137 All declarations at file scope should be static
where possible.

138 Identifiers shall not simultaneously have
both internal and external linkage in the
same translation unit.

139 External objects will not be declared in more
than one file.

Reports all duplicate declarations inside
a translation unit. Reports when the
declaration localization is not the same in all
translation units.

140 The register storage class specifier shall not
be used.

141 A class, structure, or enumeration will not
be declared in the definition of its type.

Initialization

N. JSF++ Definition Polyspace Specification

142 All variables shall be initialized before use. Done with Non-initialized variable checks in
the software.

2 Coding Rule Sets and Concepts

2-110

N. JSF++ Definition Polyspace Specification

144 Braces shall be used to indicate and match
the structure in the non-zero initialization of
arrays and structures.

This covers partial initialization.

145 In an enumerator list, the '=' construct shall
not be used to explicitly initialize members
other than the first, unless all items are
explicitly initialized.

Generates one report for an enumerator list.

Types

N. JSF++ Definition Polyspace Specification

147 The underlying bit representations of
floating point numbers shall not be used in
any way by the programmer.

Reports on casts with float pointers (except
with void*).

148 Enumeration types shall be used instead of
integer types (and constants) to select from a
limited series of choices.

Reports when non enumeration types are
used in switches.

Constants

N. JSF++ Definition Polyspace Specification

149 Octal constants (other than zero) shall not
be used.

150 Hexadecimal constants will be represented
using all uppercase letters.

151 Numeric values in code will not be used;
symbolic values will be used instead.

Reports direct numeric constants (except
integer/float value 1, 0) in expressions, non
-const initializations. and switch cases.
char constants are allowed. Does not report
on templates non-type parameter.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

151.1 A string literal shall not be modified. Report when a char*, char[], or string
type is used not as const.

 JSF C++ Coding Rules

2-111

N. JSF++ Definition Polyspace Specification

A violation is raised if a string literal (for
example, “ “) is cast as a non const.

Variables

N. JSF++ Definition Polyspace Specification

152 Multiple variable declarations shall not be
allowed on the same line.

Unions and Bit Fields

N. JSF++ Definition Polyspace Specification

153 Unions shall not be used.
154 Bit-fields shall have explicitly unsigned

integral or enumeration types only.

156 All the members of a structure (or class)
shall be named and shall only be accessed
via their names.

Reports unnamed bit-fields (unnamed fields
are not allowed).

Operators

N. JSF++ Definition Polyspace Specification

157 The right hand operand of a && or ||
operator shall not contain side effects.

Assumes rule 159 is not violated.

Messages in report file:

• The right hand operand of a && operator
shall not contain side effects.

• The right hand operand of a || operator
shall not contain side effects.

158 The operands of a logical && or || shall be
parenthesized if the operands contain binary
operators.

Messages in report file:

• The operands of a logical && shall be
parenthesized if the operands contain
binary operators.

• The operands of a logical || shall be
parenthesized if the operands contain
binary operators.

2 Coding Rule Sets and Concepts

2-112

N. JSF++ Definition Polyspace Specification

Exception for:
X || Y || Z , Z&&Y &&Z

159 Operators ||, &&, and unary & shall not be
overloaded.

Messages in report file:

• Unary operator & shall not be
overloaded.

• Operator || shall not be overloaded.
• Operator && shall not be overloaded.

160 An assignment expression shall be used
only as the expression in an expression
statement.

Only simple assignment, not +=, ++, etc.

162 Signed and unsigned values shall not
be mixed in arithmetic or comparison
operations.

163 Unsigned arithmetic shall not be used.
164 The right hand operand of a shift operator

shall lie between zero and one less than
the width in bits of the left-hand operand
(inclusive).

164.1 The left-hand operand of a right-shift
operator shall not have a negative value.

Detects constant case +. Found by the
software for dynamic cases.

165 The unary minus operator shall not be
applied to an unsigned expression.

166 The sizeof operator will not be used on
expressions that contain side effects.

168 The comma operator shall not be used.

Pointers and References

N. JSF++ Definition Polyspace Specification

169 Pointers to pointers should be avoided when
possible.

Reports second-level pointers, except for
arguments of main.

170 More than 2 levels of pointer indirection
shall not be used.

Only reports on variables/parameters.

 JSF C++ Coding Rules

2-113

N. JSF++ Definition Polyspace Specification

171 Relational operators shall not be applied to
pointer types except where both operands
are of the same type and point to:

• the same object,
• the same function,
• members of the same object, or
• elements of the same array (including

one past the end of the same array).

Reports when relational operator are used
on pointer types (casts ignored).

173 The address of an object with automatic
storage shall not be assigned to an object
which persists after the object has ceased to
exist.

174 The null pointer shall not be de-referenced. Done with checks in software.
175 A pointer shall not be compared to NULL or

be assigned NULL; use plain 0 instead.
Reports usage of NULL macro in pointer
contexts.

176 A typedef will be used to simplify program
syntax when declaring function pointers.

Reports non-typedef function pointers, or
pointers to member functions for types of
variables, fields, parameters. Returns type
of function, cast, and exception specification.

Type Conversions

N. JSF++ Definition Polyspace Specification

177 User-defined conversion functions should
be avoided.

Reports user defined conversion function,
non-explicit constructor with one parameter
or default value for others (even undefined
ones).

Does not report copy-constructor.

Additional message for constructor case:

This constructor should be flagged as
"explicit".

2 Coding Rule Sets and Concepts

2-114

N. JSF++ Definition Polyspace Specification

178 Down casting (casting from base to derived
class) shall only be allowed through one of
the following mechanism:

• Virtual functions that act like dynamic
casts (most likely useful in relatively
simple cases).

• Use of the visitor (or similar) pattern
(most likely useful in complicated cases).

Reports explicit down casting, dynamic_cast
included. (Visitor patter does not have a
special case.)

179 A pointer to a virtual base class shall not be
converted to a pointer to a derived class.

Reports this specific down cast. Allows
dynamic_cast.

180 Implicit conversions that may result in a
loss of information shall not be used.

Reports the following implicit casts :

integer => smaller integer

unsigned => smaller or eq signed

signed => smaller or eq un-signed

integer => float

float => integer

Does not report for cast to bool reports
for implicit cast on constant done with the
options -scalar-overflows-checks
signed-and-unsigned or -ignore-
constant-overflows

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

181 Redundant explicit casts will not be used. Reports useless cast: cast T to T. Casts to
equivalent typedefs are also reported.

182 Type casting from any type to or from
pointers shall not be used.

Does not report when Rule 181 applies.

 JSF C++ Coding Rules

2-115

N. JSF++ Definition Polyspace Specification

184 Floating point numbers shall not be
converted to integers unless such a
conversion is a specified algorithmic
requirement or is necessary for a hardware
interface.

Reports float->int conversions. Does not
report implicit ones.

185 C++ style casts (const_cast,
reinterpret_cast, and static_cast)
shall be used instead of the traditional C-
style casts.

Flow Control Standards

N. JSF++ Definition Polyspace Specification

186 There shall be no unreachable code. Done with gray checks in the software.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

187 All non-null statements shall potentially
have a side-effect.

188 Labels will not be used, except in switch
statements.

189 The goto statement shall not be used.
190 The continue statement shall not be used.
191 The break statement shall not be used

(except to terminate the cases of a switch
statement).

192 All if, else if constructs will contain
either a final else clause or a comment
indicating why a final else clause is not
necessary.

else if should contain an else clause.

193 Every non-empty case clause in a switch
statement shall be terminated with a break
statement.

2 Coding Rule Sets and Concepts

2-116

N. JSF++ Definition Polyspace Specification

194 All switch statements that do not intend
to test for every enumeration value shall
contain a final default clause.

Reports only for missing default.

195 A switch expression will not represent a
Boolean value.

196 Every switch statement will have at least
two cases and a potential default.

197 Floating point variables shall not be used
as loop counters.

Assumes 1 loop parameter.

198 The initialization expression in a for
loop will perform no actions other than
to initialize the value of a single for loop
parameter.

Reports if loop parameter cannot be
determined. Assumes Rule 200 is not
violated. The loop variable parameter is
assumed to be a variable.

199 The increment expression in a for loop will
perform no action other than to change a
single loop parameter to the next value for
the loop.

Assumes 1 loop parameter (Rule 198),
with non class type. Rule 200 must not be
violated for this rule to be reported.

200 Null initialize or increment expressions in
for loops will not be used; a while loop
will be used instead.

201 Numeric variables being used within a
for loop for iteration counting shall not be
modified in the body of the loop.

Assumes 1 loop parameter (AV rule 198),
and no alias writes.

Expressions

N. JSF++ Definition Polyspace Specification

202 Floating point variables shall not be tested
for exact equality or inequality.

Reports only direct equality/inequality.
Check done for all expressions.

203 Evaluation of expressions shall not lead to
overflow/underflow.

Done with overflow checks in the software.

204 A single operation with side-effects shall
only be used in the following contexts:

• by itself

Reports when:

• A side effect is found in a return
statement

 JSF C++ Coding Rules

2-117

N. JSF++ Definition Polyspace Specification

• the right-hand side of an assignment
• a condition
• the only argument expression with a

side-effect in a function call
• condition of a loop
• switch condition
• single part of a chained operation

• A side effect exists on a single value, and
only one operand of the function call has
a side effect.

204.1 The value of an expression shall be the
same under any order of evaluation that the
standard permits.

Reports when:

• Variable is written more than once in an
expression

• Variable is read and write in sub-
expressions

• Volatile variable is accessed more than
once

Note: Read-write operations such as ++, are
only considered as a write.

205 The volatile keyword shall not be used
unless directly interfacing with hardware.

Reports if volatile keyword is used.

Memory Allocation

N. JSF++ Definition Polyspace Specification

206 Allocation/deallocation from/to the free store
(heap) shall not occur after initialization.

Reports calls to C library functions: malloc
/ calloc / realloc / free and all new/
delete operators in functions or methods.

Fault Handling

N. JSF++ Definition Polyspace Specification

208 C++ exceptions shall not be used. Reports try, catch, throw spec, and
throw.

2 Coding Rule Sets and Concepts

2-118

Portable Code

N. JSF++ Definition Polyspace Specification

209 The basic types of int, short, long, float
and double shall not be used, but specific-
length equivalents should be typedef'd
accordingly for each compiler, and these type
names used in the code.

Only allows use of basic types through direct
typedefs.

213 No dependence shall be placed on C++’s
operator precedence rules, below arithmetic
operators, in expressions.

Reports when a binary operation has one
operand that is not parenthesized and is an
operation with inferior precedence level.

Reports bitwise and shifts operators that
are used without parenthesis and binary
operation arguments.

215 Pointer arithmetic will not be used. Reports:
p + I

p - I

p++

p--

p+=

p-=

Allows p[i].

Unsupported JSF++ Rules

• “Code Size and Complexity” on page 2-119
• “Rules” on page 2-119
• “Environment” on page 2-120
• “Libraries” on page 2-120
• “Header Files” on page 2-120
• “Style” on page 2-120
• “Classes” on page 2-121
• “Namespaces” on page 2-122
• “Templates” on page 2-122
• “Functions” on page 2-123

 JSF C++ Coding Rules

2-119

• “Comments” on page 2-123
• “Initialization” on page 2-124
• “Types” on page 2-124
• “Unions and Bit Fields” on page 2-124
• “Operators” on page 2-124
• “Type Conversions” on page 2-125
• “Expressions” on page 2-125
• “Memory Allocation” on page 2-125
• “Portable Code” on page 2-125
• “Efficiency Considerations” on page 2-126
• “Miscellaneous” on page 2-126
• “Testing” on page 2-126

Code Size and Complexity

N. JSF++ Definition

2 There shall not be any self-modifying code.

Rules

N. JSF++ Definition

4 To break a “should” rule, the following approval must be received by the developer:

• approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

5 To break a “will” or a “shall” rule, the following approvals must be received by the
developer:

• approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

• approval from the software product manager (obtained by the unit approval in the
developmental CM tool)

6 Each deviation from a “shall” rule shall be documented in the file that contains the
deviation. Deviations from this rule shall not be allowed, AV Rule 5 notwithstanding.

7 Approval will not be required for a deviation from a “shall” or “will” rule that complies
with an exception specified by that rule.

2 Coding Rule Sets and Concepts

2-120

Environment

N. JSF++ Definition

10 Values of character types will be restricted to a defined and documented subset of ISO
10646 1.

Libraries

N. JSF++ Definition

16 Only DO-178B level A [15] certifiable or SEAL 1 C/C++ libraries shall be used with safety-
critical (i.e. SEAL 1) code.

Header Files

N. JSF++ Definition

34 Header files should contain logically related declarations only.
36 Compilation dependencies should be minimized when possible.
37 Header (include) files should include only those header files that are required for them to

successfully compile. Files that are only used by the associated .cpp file should be placed in
the .cpp file — not the .h file.

38 Declarations of classes that are only accessed via pointers (*) or references (&) should be
supplied by forward headers that contain only forward declarations.

Style

N. JSF++ Definition

45 All words in an identifier will be separated by the ‘_’ character.
49 All acronyms in an identifier will be composed of uppercase letters.
55 The name of a header file should reflect the logical entity for which it provides

declarations.
56 The name of an implementation file should reflect the logical entity for which it provides

definitions and have a “.cpp” extension (this name will normally be identical to the header
file that provides the corresponding declarations.)

At times, more than one .cpp file for a given logical entity will be required. In these cases,
a suffix should be appended to reflect a logical differentiation.

 JSF C++ Coding Rules

2-121

Classes

N. JSF++ Definition

64 A class interface should be complete and minimal.
65 A structure should be used to model an entity that does not require an invariant.
66 A class should be used to model an entity that maintains an invariant.
69 A member function that does not affect the state of an object (its instance variables) will be

declared const.
Member functions should be const by default. Only when there is a clear, explicit reason
should the const modifier on member functions be omitted.

70 A class will have friends only when a function or object requires access to the private
elements of the class, but is unable to be a member of the class for logical or efficiency
reasons.

70.1 An object shall not be improperly used before its lifetime begins or after its lifetime ends.
71 Calls to an externally visible operation of an object, other than its constructors, shall not

be allowed until the object has been fully initialized.
72 The invariant for a class should be:

• A part of the postcondition of every class constructor,
• A part of the precondition of the class destructor (if any),
• A part of the precondition and postcondition of every other publicly accessible

operation.
73 Unnecessary default constructors shall not be defined.
77 A copy constructor shall copy all data members and bases that affect the class invariant (a

data element representing a cache, for example, would not need to be copied).
80 The default copy and assignment operators will be used for classes when those operators

offer reasonable semantics.
84 Operator overloading will be used sparingly and in a conventional manner.
85 When two operators are opposites (such as == and !=), both will be defined and one will be

defined in terms of the other.
86 Concrete types should be used to represent simple independent concepts.
87 Hierarchies should be based on abstract classes.
90 Heavily used interfaces should be minimal, general and abstract.

2 Coding Rule Sets and Concepts

2-122

N. JSF++ Definition

91 Public inheritance will be used to implement “is-a” relationships.
92 A subtype (publicly derived classes) will conform to the following guidelines with respect

to all classes involved in the polymorphic assignment of different subclass instances to the
same variable or parameter during the execution of the system:

• Preconditions of derived methods must be at least as weak as the preconditions of the
methods they override.

• Postconditions of derived methods must be at least as strong as the postconditions of
the methods they override.

In other words, subclass methods must expect less and deliver more than the base
class methods they override. This rule implies that subtypes will conform to the Liskov
Substitution Principle.

93 “has-a” or “is-implemented-in-terms-of” relationships will be modeled through membership
or non-public inheritance.

Namespaces

N. JSF++ Definition

100 Elements from a namespace should be selected as follows:

• using declaration or explicit qualification for few (approximately five) names,
• using directive for many names.

Templates

N. JSF++ Definition

101 Templates shall be reviewed as follows:

1 with respect to the template in isolation considering assumptions or requirements
placed on its arguments.

2 with respect to all functions instantiated by actual arguments.
102 Template tests shall be created to cover all actual template instantiations.
103 Constraint checks should be applied to template arguments.
105 A template definition’s dependence on its instantiation contexts should be minimized.

 JSF C++ Coding Rules

2-123

N. JSF++ Definition

106 Specializations for pointer types should be made where appropriate.

Functions

N. JSF++ Definition

112 Function return values should not obscure resource ownership.
115 If a function returns error information, then that error information will be tested.
117 Arguments should be passed by reference if NULL values are not possible:

• 117.1 – An object should be passed as const T& if the function should not change the
value of the object.

• 117.2 – An object should be passed as T& if the function may change the value of the
object.

118 Arguments should be passed via pointers if NULL values are possible:

• 118.1 – An object should be passed as const T* if its value should not be modified.
• 118.2 – An object should be passed as T* if its value may be modified.

120 Overloaded operations or methods should form families that use the same semantics,
share the same name, have the same purpose, and that are differentiated by formal
parameters.

122 Trivial accessor and mutator functions should be inlined.
123 The number of accessor and mutator functions should be minimized.
124 Trivial forwarding functions should be inlined.
125 Unnecessary temporary objects should be avoided.

Comments

N. JSF++ Definition

127 Code that is not used (commented out) shall be deleted.

Note: This rule cannot be annotated in the source code.
128 Comments that document actions or sources (e.g. tables, figures, paragraphs, etc.) outside

of the file being documented will not be allowed.

2 Coding Rule Sets and Concepts

2-124

N. JSF++ Definition

129 Comments in header files should describe the externally visible behavior of the functions
or classes being documented.

130 The purpose of every line of executable code should be explained by a comment, although
one comment may describe more than one line of code.

131 One should avoid stating in comments what is better stated in code (i.e. do not simply
repeat what is in the code).

132 Each variable declaration, typedef, enumeration value, and structure member will be
commented.

134 Assumptions (limitations) made by functions should be documented in the function’s
preamble.

Initialization

N. JSF++ Definition

143 Variables will not be introduced until they can be initialized with meaningful values.
(See also AV Rule 136, AV Rule 142, and AV Rule 73 concerning declaration scope,
initialization before use, and default constructors respectively.)

Types

N. JSF++ Definition

146 Floating point implementations shall comply with a defined floating point standard.

The standard that will be used is the ANSI/IEEE® Std 754 [1].

Unions and Bit Fields

N. JSF++ Definition

155 Bit-fields will not be used to pack data into a word for the sole purpose of saving space.

Operators

N. JSF++ Definition

167 The implementation of integer division in the chosen compiler shall be determined,
documented and taken into account.

 JSF C++ Coding Rules

2-125

Type Conversions

N. JSF++ Definition

183 Every possible measure should be taken to avoid type casting.

Expressions

N. JSF++ Definition

204 A single operation with side-effects shall only be used in the following contexts:

1 by itself
2 the right-hand side of an assignment
3 a condition
4 the only argument expression with a side-effect in a function call
5 condition of a loop
6 switch condition
7 single part of a chained operation

Memory Allocation

N. JSF++ Definition

207 Unencapsulated global data will be avoided.

Portable Code

N. JSF++ Definition

210 Algorithms shall not make assumptions concerning how data is represented in memory
(e.g. big endian vs. little endian, base class subobject ordering in derived classes, nonstatic
data member ordering across access specifiers, etc.).

210.1 Algorithms shall not make assumptions concerning the order of allocation of nonstatic
data members separated by an access specifier.

211 Algorithms shall not assume that shorts, ints, longs, floats, doubles or long doubles begin
at particular addresses.

212 Underflow or overflow functioning shall not be depended on in any special way.

2 Coding Rule Sets and Concepts

2-126

N. JSF++ Definition

214 Assuming that non-local static objects, in separate translation units, are initialized in a
special order shall not be done.

Efficiency Considerations

N. JSF++ Definition

216 Programmers should not attempt to prematurely optimize code.

Miscellaneous

N. JSF++ Definition

217 Compile-time and link-time errors should be preferred over run-time errors.
218 Compiler warning levels will be set in compliance with project policies.

Testing

N. JSF++ Definition

219 All tests applied to a base class interface shall be applied to all derived class interfaces
as well. If the derived class poses stronger postconditions/invariants, then the new
postconditions /invariants shall be substituted in the derived class tests.

220 Structural coverage algorithms shall be applied against flattened classes.
221 Structural coverage of a class within an inheritance hierarchy containing virtual functions

shall include testing every possible resolution for each set of identical polymorphic
references.

3

Check Coding Rules from the
Polyspace Environment

• “Activate Coding Rules Checker” on page 3-2
• “Select Specific MISRA or JSF Coding Rules” on page 3-6
• “Create Custom Coding Rules” on page 3-9
• “Format of Custom Coding Rules File” on page 3-11
• “Exclude Files From Analysis” on page 3-12
• “Allow Custom Pragma Directives” on page 3-13
• “Specify Boolean Types” on page 3-14
• “Find Coding Rule Violations” on page 3-15
• “Review Coding Rule Violations” on page 3-16
• “Filter and Group Coding Rule Violations” on page 3-18

3 Check Coding Rules from the Polyspace Environment

3-2

Activate Coding Rules Checker

This example shows how to activate the coding rules checker before you start an analysis.
This activation enables Polyspace Bug Finder to search for coding rule violations. You
can view the coding rule violations in your analysis results.

1 Open project configuration.
2 On the Configuration pane, select Coding Rules.
3 Select the check box for the type of coding rules that you want to check.

For C code, you can check compliance with:

• MISRA C:2004
• MISRA AC AGC
• MISRA C:2012

If you have generated code, use the Use generated code requirements option
to use the MISRA C:2012 categories for generated code.

• Custom coding rules

For C++ code, you can check compliance with:

• MISRA C++: 2008
• JSF C++
• Custom coding rules

4 For each rule type that you select, from the drop-down list, select the subset of rules
to check.

MISRA C:2004

Option Description

required-rules All required MISRA C:2004 coding rules.
all-rules AllMISRA C:2004 coding rules (required and advisory).

SQO-subset1

A small subset of MISRA C:2004 rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

 Activate Coding Rules Checker

3-3

Option Description

SQO-subset2

A second subset of rules that include the rules in SQO-
subset1 and contain some additional rules. In Polyspace
Code Prover, observing the additional rules can further
reduce the number of unproven results.

custom A set of MISRA C:2004 coding rules that you specify.

MISRA AC AGC

Option Description

OBL-rules All required MISRA AC AGC coding rules.

OBL-REC-rules
All required and recommended MISRA AC AGC coding
rules.

all-rules All required, recommended, and readability coding rules.

SQO-subset1

A small subset of MISRA AC AGC rules. In Polyspace
Code Prover, observing these rules can reduce the number
of unproven results.

SQO-subset2

A second subset of MISRA AC AGC rules that include the
rules in SQO-subset1 and contain some additional rules.
In Polyspace Code Prover, observing the additional rules
can further reduce the number of unproven results.

custom A set of MISRA AC AGC coding rules that you specify.

MISRA C:2012

Option Description

mandatory

All mandatory MISRA C:2012 coding rules. If you have
generated code, also use the Use generated code
requirements option categorization for generated code.

mandatory-required

All mandatory and required MISRA C:2012 coding rules.
If you have generated code, also use the Use generated
code requirements option categorization for generated
code.

all
All MISRA C:2012 coding rules (mandatory, required, and
advisory).

3 Check Coding Rules from the Polyspace Environment

3-4

Option Description

SQO-subset1

A small subset of MISRA C rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

SQO-subset2

A second subset of rules that include the rules in SQO-
subset1 and contain some additional rules. In Polyspace
Code Prover, observing the additional rules can further
reduce the number of unproven results.

custom A set of MISRA C:2012 coding rules that you specify.

MISRA C++

Option Description

required-rules All required MISRA C++ coding rules.
all-rules All required and advisory MISRA C++ coding rules.

SQO-subset1

A small subset of MISRA C++ rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

SQO-subset2

A second subset of rules with indirect impact on the
selectivity in addition to SQO-subset1. In Polyspace Code
Prover, observing the additional rules can further reduce
the number of unproven results.

custom A specified set of MISRA C++ coding rules.

JSF C++

Option Description

shall-rules Shall rules are mandatory requirements. These rules
require verification.

shall-will-rules All Shall and Will rules. Will rules are intended to be
mandatory requirements. However, these rules do not
require verification.

all-rules All Shall, Will, and Should rules. Should rules are
advisory rules.

custom A set of JSF C++ coding rules that you specify.

 Activate Coding Rules Checker

3-5

5 If you select Check custom rules, specify the path to your custom rules file or click
Edit to create one.

When rules checking is complete, the software displays the coding rule violations in
purple on the Results Summary pane.

Related Examples
• “Select Specific MISRA or JSF Coding Rules”
• “Create Custom Coding Rules”
• “Exclude Files From Analysis”

More About
• “Rule Checking”

3 Check Coding Rules from the Polyspace Environment

3-6

Select Specific MISRA or JSF Coding Rules

This example shows how to specify a subset of MISRA or JSF rules for the coding rules
checker. If you select custom from the MISRA or JSF drop-down list, you must provide a
file that specifies the rules to check.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules.
3 Select the check box for the type of coding rules you wish to check
4 From the corresponding drop-down list, select custom. The software displays a new

field for your custom file.
5 To the right of this field, click Edit. A New File window opens, displaying a table of

rules.

 Select Specific MISRA or JSF Coding Rules

3-7

Select On for the rules you want to check.
6 Click OK to save the rules and close the window.

The Save as dialog box opens.
7 In the File field, enter a name for the rules file.
8 Click OK to save the file and close the dialog box.

3 Check Coding Rules from the Polyspace Environment

3-8

The full path to the rules file appears. To reuse this rules file for other projects, type

this path name or use the icon in the New File window.

Related Examples
• “Activate Coding Rules Checker”
• “Create Custom Coding Rules”

More About
• “Rule Checking”

 Create Custom Coding Rules

3-9

Create Custom Coding Rules

This example shows how to create a custom coding rules file. You can use this file to
check names or text patterns in your source code against custom rules that you specify.
For each rule, you specify a pattern in the form of a regular expression. The software
compares the pattern against identifiers in the source code and determines whether the
custom rule is violated.

1 Create Coding Rules File

1 Create a Polyspace project. Add printInitialValue.c to the project.
2 On the Configuration pane, select Coding Rules. Select the Check custom

rules box.
3

Click .

The New File window opens, displaying a table of rule groups.
4 From the drop-down list Set the following state to all Custom C, select Off.

Click Apply.
5 Expand the Structs node. For the option 4.3 All struct fields must follow the

specified pattern:

Column Title Action

On Select .
Convention Enter All struct fields must

begin with s_ and have capital

letters

Pattern Enter s_[A-Z0-9_]
Comment Leave blank. This column is for

comments that appear in the coding
rules file alone.

2 Review Coding Rule Violations

1 Save the file and run the verification. On the Results Summary pane, you see
two violations of rule 4.3. Select the first violation.

a On the Source pane, the line int a; is marked.

3 Check Coding Rules from the Polyspace Environment

3-10

b On the Check Details pane, you see the error message you had entered,
All struct fields must begin with s_ and have capital

letters

2 Right-click on the Source pane and select Open Editor. The file
printInitialValue.c opens in the Code Editor pane or an external text
editor depending on your Preferences.

3 In the file, replace all instances of a with s_A and b with s_B. Rerun the
verification.

The custom rule violations no longer appear on the Results Summary pane.

Related Examples
• “Activate Coding Rules Checker”
• “Select Specific MISRA or JSF Coding Rules”
• “Exclude Files From Analysis”

More About
• “Rule Checking”
• “Format of Custom Coding Rules File”

 Format of Custom Coding Rules File

3-11

Format of Custom Coding Rules File

In a custom coding rules file, each rule appears in the following format:
N.n off|on

convention=violation_message

pattern=regular_expression

• N.n — Custom rule number, for example, 1.2.
• off — Rule is not considered.
• on — The software checks for violation of the rule. After verification, it displays the

coding rule violation on the Results Summary pane.
• violation_message — Software displays this text in an XML file within the

Results/Polyspace-Doc folder.
• regular_expression — Software compares this text pattern against a source code

identifier that is specific to the rule. See “Custom Coding Rules”.

The keywords convention= and pattern= are optional. If present, they apply to
the rule whose number immediately precedes these keywords. If convention= is not
given for a rule, then a standard message is used. If pattern= is not given for a rule,
then the default regular expression is used, that is, .*.

Use the symbol # to start a comment. Comments are not allowed on lines with the
keywords convention= and pattern=.

The following example contains three custom rules: 1.1, 8.1, and 9.1.
Custom rules configuration file

1.1 off # Disable custom rule number 1.1

8.1 on # Violation of custom rule 8.1 produces a warning

convention=Global constants must begin by G_ and must be in capital letters.

pattern=G_[A-Z0-9_]*

9.1 on # Non-adherence to custom rule 9.1 produces a warning

convention=Global variables should begin by g_.

pattern=g_.*

Related Examples
• “Create Custom Coding Rules”

3 Check Coding Rules from the Polyspace Environment

3-12

Exclude Files From Analysis

This example shows how to exclude certain files from defect and coding rules checking.

1 Open the project configuration.
2 In the Configuration tree view, select Inputs & Stubbing.
3 Select the Files and folders to ignore check box.
4 From the corresponding drop-down list, select one of the following:

• all-headers (default) — Excludes header files in the Include folders of your
project. For example .h or .hpp files.

• all — Excludes all include files in the Include folders of your project. For
example, if you are checking a large code base with standard or Visual headers,
excluding include folders can significantly improve the speed of code analysis.

• custom — Excludes files or folders specified in the File/Folder view. To add

files to the custom File/Folder list, select to choose the files and folders to
exclude. To remove a file or folder from the list of excluded files and folders, select

the row. Then click .

Related Examples
• “Activate Coding Rules Checker”

More About
• “Rule Checking”

 Allow Custom Pragma Directives

3-13

Allow Custom Pragma Directives

This example shows how to exclude custom pragma directives from coding rules
checking. MISRA C rule 3.4 requires checking that pragma directives are documented
within the documentation of the compiler. However, you can allow undocumented
pragma directives to be present in your code.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules.
3

To the right of Allowed pragmas, click .

In the Pragma view, the software displays an active text field.
4 In the text field, enter a pragma directive.
5

To remove a directive from the Pragma list, select the directive. Then click .

Related Examples
• “Activate Coding Rules Checker”

More About
• “Rule Checking”

3 Check Coding Rules from the Polyspace Environment

3-14

Specify Boolean Types

This example shows how to specify data types you want Polyspace to consider as Boolean
during MISRA C rules checking. The software applies this redefinition only to data types
defined by typedef statements. The use of this option may affect the checking of MISRA
C:2004 rules 12.6, 13.2, 15.4, and MISRA C:2012 rules 14.4, 16.7.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules.
3

To the right of Effective boolean types, click .

In the Type view, the software displays an active text field.
4 In the text field, specify the data type that you want Polyspace to treat as Boolean.
5

To remove a data type from the Type list, select the data type. Then click .

Related Examples
• “Activate Coding Rules Checker”

More About
• “Rule Checking”

 Find Coding Rule Violations

3-15

Find Coding Rule Violations

This example shows how to check for coding rule violations alone.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules. Activate the desired coding

rule checker.
3 In the Configuration tree view, select Bug Finder Analysis.
4 Clear the Find defects check box.
5

Click to run the coding rules checker without checking defects.

You can view the results by selecting the RuleSet-report.xml file from the results
folder.

Related Examples
• “Activate Coding Rules Checker”
• “Select Specific MISRA or JSF Coding Rules”
• “Review Coding Rule Violations”

More About
• “Rule Checking”

3 Check Coding Rules from the Polyspace Environment

3-16

Review Coding Rule Violations

This example shows how to review coding rule violations once code analysis is complete.
After analysis, the Results Summary pane displays the rule violations with a

• symbol for predefined coding rules, MISRA or JSF.
• symbol for custom coding rules.

1 Select a coding-rule violation on the Results Summary pane.

• The predefined rules such as MISRA or JSF are indicated by .
• The custom rules are indicated by .

2 On the Check Details pane, view the location and description of the violated rule.
In the source code, the line containing the violation appears highlighted.

3 Review the violation. On the Results Summary pane, select a Classification to
describe the severity of the issue:

• High

• Medium

• Low

• Not a defect

 Review Coding Rule Violations

3-17

4 Select a Status to describe how you intend to address the issue:

• Fix

• Improve

• Investigate

• Justified

(This status also marks the result as justified.)
• No action planned

(This status also marks the result as justified.)
• Other

You can also define your own statuses.
5 In the comment box, enter additional information about the violation.
6 To open the source file that contains the coding rule violation, on the Source pane,

right-click the code with the purple check. From the context menu, select Open
Editor. The file opens in the Code Editor pane or an external text editor depending
on your Preferences.

7 Fix the coding rule violation.
8 When you have corrected the coding rule violations, run the analysis again.

Related Examples
• “Activate Coding Rules Checker”
• “Find Coding Rule Violations”
• “Filter and Group Coding Rule Violations”

3 Check Coding Rules from the Polyspace Environment

3-18

Filter and Group Coding Rule Violations

This example shows how to use filters in the Results Summary pane to focus on
specific kinds of coding rule violations. By default, the software displays both coding rule
violations and defects.

Group Violations

1 On the Results Summary pane, select Group by > Family.

The rules are grouped by numbers. Each group corresponds to a certain code
construct.

2 Expand the group nodes to select an individual coding rule violation.

Filter Violations

1 On the Results Summary pane, place your cursor on the Check column header.
Click the filter icon that appears.

2 From the context menu, clear the All check box.
3 Select the violated rule numbers that you want to focus on.
4 Click OK.

Related Examples
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

4

Find Bugs From the Polyspace
Environment

• “Choose Specific Defects” on page 4-2
• “Run Local Analysis” on page 4-3
• “Run Remote Batch Analysis” on page 4-4
• “Monitor Analysis” on page 4-5
• “Specify Results Folder” on page 4-6

4 Find Bugs From the Polyspace Environment

4-2

Choose Specific Defects

There are two preset configurations for Bug Finder defects, but you can also customize
which defects to check for during the analysis.

1 On the Configuration pane, select Bug Finder Analysis.
2 From the Find defects menu, select a set of defects. The options are:

• default for the default list of defects. This list contains defects that are
applicable to most coding projects. To see the defects in the default list, expand
the nodes Numerical, Static memory, etc.

• all for all defects.
• custom to add defects to the default list or remove defects from it.

 Run Local Analysis

4-3

Run Local Analysis

Before running an analysis from the Polyspace interface, you must set up your project’s
source files and analysis options. For more information, see “Create New Project”.

1 Select a project to analyze.
2

Select the button.
3 Monitor the analysis on the Output Summary tab. If the analysis fails, this tab

also lists errors or warnings.

Once the analysis is complete, on the Project Browser, you can see the word
Completed next to your project result. The Results Summary tab opens
automatically with your completed results.

4 Find Bugs From the Polyspace Environment

4-4

Run Remote Batch Analysis

Before running a batch analysis, you must set up your project’s source files, analysis
options, and remote analysis settings. If you have not done so, see “Create New Project”
and “Set Up Polyspace Metrics”.

1 Select a project to analyze.
2 On the Configuration pane, select Distributed Computing.
3 Select Batch.
4 If you want to store your results in the Polyspace Metrics repository, select Add to

results repository.

Otherwise, clear this check box.
5

Select the button.
6 To monitor the analysis, select Tools > Open Job Monitor.

Once the analysis is complete, you can open your results from the Results folder, or
download them from Polyspace Metrics.

Related Examples
• “Open Results”
• “Download Results From Polyspace Metrics”

 Monitor Analysis

4-5

Monitor Analysis

To monitor the progress of a local analysis, use the following panes in the Polyspace Bug
Finder interface. To open or close one of the tabs, select Window > Show/Hide View.

• Output Summary — Displays progress of verification, compile phase messages and
errors. To search for a term, in the Search field, enter the required term. Click the up
or down arrow to move sequentially through occurrences of the term.

• Full Log — This tab displays messages, errors, and statistics for the phases of the
analysis. To search for a term, in the Search field, enter the required term. Click the
up arrow or down arrow to move sequentially through occurrences of this term.

At the end of a local analysis, the Dashboard tab displays statistics, for example, code
coverage and check distribution.

To monitor the progress of a remote analysis:

1 From the Polyspace interface, select Tools > Open Job Monitor.
2 In the Polyspace Job Monitor, follow your queued job to monitor progress.

4 Find Bugs From the Polyspace Environment

4-6

Specify Results Folder

By default, Polyspace Bug Finder saves your results in the same directory as your project
in a folder called Results. Each subsequent analysis overwrites the old results.

However, to specify a different location for results:

1 On the Project Browser, right-click the Results folder.
2 Select Choose a Result Folder.
3 In the Choose a Result Folder window, navigate to the new results folder and click

Select.

On the Project Browser, the new results folder appears.

The previous results folder disappears from the Project Browser. However, the
results have not been deleted, just removed from the Polyspace interface. To view the
previous results, use File > Open Result.

5

View Results in the Polyspace
Environment

• “Open Results” on page 5-2
• “View Results Summary in Polyspace Metrics” on page 5-3
• “Download Results From Polyspace Metrics” on page 5-5
• “Filter and Group Results” on page 5-8
• “Limit Display of Defects” on page 5-16
• “Generate Reports” on page 5-19
• “Review and Comment Results” on page 5-21
• “Review Code Metrics” on page 5-25
• “Import Comments from Previous Analyses” on page 5-29
• “View Code Sequence Causing Defect” on page 5-30
• “Results Folder Contents” on page 5-32
• “Windows Used to Review Results” on page 5-33
• “Bug Finder Defect Categories” on page 5-46
• “Common Weakness Enumeration from Bug Finder Defects” on page 5-49
• “Find CWE Identifiers from Defects” on page 5-51
• “Mapping Between CWE Identifiers and Defects” on page 5-53

5 View Results in the Polyspace Environment

5-2

Open Results

This example shows how to open Polyspace Bug Finder results. Before you open the
results, you must run Polyspace Bug Finder analysis on your source files, which produces
a results file with the extension .psbf.

Open Results from Active Project

Suppose you have a project called Bug_Finder_Example open in the
Project Browser. After analysis, the results appear under the project as
Result_Bug_Finder_Example. Results open automatically. To manually open results,
double-click Result_Bug_Finder_Example.

Open Results File Using File Browser

If the results file Bug_Finder_Example.psbf is located on the path 'C:
\Bug_Finder_Example\Results'

1 Select File > Open Result. The Open Results browser opens.
2 Navigate to the result folder containing the file with extension .psbf. In this

example, navigate to 'C:\Bug_Finder_Example\Results'.
3 Select the file. Click Open.

More About
• “Results Folder Contents” on page 5-32
• “Windows Used to Review Results”

 View Results Summary in Polyspace Metrics

5-3

View Results Summary in Polyspace Metrics

This example shows how to view results summary in Polyspace Metrics. On the
Configuration pane, under Distributed Computing, if you select Add to results
repository, after remote analysis, you can view a summary of the results in Polyspace
Metrics.

Open Polyspace Metrics

In the address bar of your Web browser, enter the following URL:

protocol:// ServerName: PortNumber

• protocol is either http (default) or https. To use HTTPS, you must set up the
configuration file and the Metrics and Remote Server Settings.

• ServerName is the name or IP address of your Polyspace Metrics server.
• PortNumber is the Web server port number (default 8080)

On the webpage, you can view the projects saved to your Polyspace Metrics repository.

View Results Summary

1 Select the Projects tab.
2 To view the results summary for your project, on the Projects column, select the

project name.

The results summary for the project appears on the webpage under the Summary
tab. The Confirmed Defects column lists the number of coding rule violations or
checks that you have reviewed.

5 View Results in the Polyspace Environment

5-4

3 To view the results in more detail, select the tabs:

• Code Metrics: Metrics such as number of lines, header files and function calls.
• Coding Rules: Description of coding rule violations
• Bug-Finder: Description of defects detected by Polyspace Bug Finder

Related Examples
• “Set Up Polyspace Metrics”
• “Download Results From Polyspace Metrics”
• “Review and Comment Results”

 Download Results From Polyspace Metrics

5-5

Download Results From Polyspace Metrics

This example shows how to download results from Polyspace Metrics. On the
Configuration pane, under Distributed Computing, if you select Add to results
repository, after remote analysis, you can view a summary of the results in Polyspace
Metrics.

Open Polyspace Metrics

In the address bar of your Web browser, enter the following URL:

protocol:// ServerName: PortNumber

• protocol is either http (default) or https. To use HTTPS, you must set up the
configuration file and the Metrics and Remote Server Settings.

• ServerName is the name or IP address of your Polyspace Metrics server.
• PortNumber is the Web server port number (default 8080)

On the webpage, you can view the projects saved to your Polyspace Metrics repository.

Download Results

1 Select the Projects tab.
2 To view the results summary for your project, on the Projects column, select the

project name.

The results summary for the project appears on the webpage under the Summary
tab.

5 View Results in the Polyspace Environment

5-6

3 To download results:

• For an individual file, on the Verification column, select the name of the file.
• For a group of files:

a Right-click on the row containing a file in the group. From the context menu,
select Add To Module.

b Enter the name of your module in the dialog box. Click OK.

The name of the module appears on the Verification column.

 Download Results From Polyspace Metrics

5-7

c Drag and drop the other files in the group to the module.
d Select the name of the module.

• For all files in the project, on the Verification column, select the version number
of the project.

The results open in Polyspace Bug Finder.

Related Examples
• “Set Up Polyspace Metrics”
• “View Results Summary in Polyspace Metrics”
• “Review and Comment Results”

5 View Results in the Polyspace Environment

5-8

Filter and Group Results

This example shows how to filter and group defects on the Results Summary pane. To
organize your review of results, use filters and groups when you want to:

• Review certain categories of defects in preference to others. For instance, you first
want to address the defects resulting from Missing or invalid return statement.

• Review only new results found since the last analysis.
• Not address the full set of coding rule violations detected by the coding rules checker.
• Review only those defects that you have already assigned a certain status. For

instance, you want to review only those defects to which you have assigned the status,
Investigate.

• Review defects from a particular file or function. Because of continuity of code,
reviewing these defects together can help you organize your review process.

If you have written the code for a particular source file, you can review the defects
only in that file.

Review Defects in a Given Category

1 To review defects resulting from Array access out of bounds:

a Open the results file, with extension, .psbf.
b On the Results Summary pane, select Group by > Family.

The defects are grouped by type.

 Filter and Group Results

5-9

c Under the category Static memory, expand the subcategory Array access out
of bounds.

5 View Results in the Polyspace Environment

5-10

Expand Array access out of bounds to view all instances of this defect type.

To see further information about an instance, select it. The information appears
on the Check Details pane.

2 To view only the defects resulting from Array access out of bounds:

 Filter and Group Results

5-11

a On the Results Summary pane, select Group by > None.

The defects appear in a flat list.
b Click the filter icon on the Check column header.

A context menu lists the filter options available.

c Clear the All check box.
d Select the Array access out of bounds check box. Click OK.

The Results Summary pane displays only the defects resulting from the Array
access out of bounds error.

Review New Results Only

To review only new results found since the last analysis, on the Results Summary
pane, select New results.

Review Defects with Given Status

To review only the defects with Investigate status:

1 Open the results file, with extension, .psbf.
2 On the Results Summary pane, place your cursor on the Status column head.
3 Click the filter icon.

5 View Results in the Polyspace Environment

5-12

A context menu lists the filter options available.

4 Clear the All check box.
5 Select the Investigate check box. Click OK.

The Results Summary pane displays only the defects with the Investigate
status.

Review Defects in a File

1 To review the defects in the file, dataflow.c:

a On the Results Summary pane, select Group by > File.

The defects displayed are grouped by files. The file names are sorted
alphabetically. Within each file name, the defects are grouped by functions,
sorted alphabetically.

 Filter and Group Results

5-13

b To view the defects in dataflow.c, expand a function name under the category,
dataflow.c.

To view further information on a bug, select the defect. Further information
about the defect appears on the Check Details pane.

5 View Results in the Polyspace Environment

5-14

2 To view only the defects in dataflow.c:

a On the Results Summary pane, select Group by > None.

The Results Summary pane displays defects ungrouped.
b Click the filter icon on the File column head.

 Filter and Group Results

5-15

A context menu lists the filter options available.

c Clear the All check box.
d Select the dataflow.c check box. Click OK.

The Results Summary pane displays only the defects in dataflow.c.

Tip If you apply a filter on a column on the Results Summary pane, the column header
displays the number of rows suppressed.

Related Examples
• “Open Results”
• “Review and Comment Results”
• “Limit Display of Defects”

More About
• “Windows Used to Review Results”

5 View Results in the Polyspace Environment

5-16

Limit Display of Defects

This example shows how to control the number and type of defects displayed on the
Results Summary pane. To reduce your review effort, you can limit the number of
defects to display for certain checks or suppress them altogether.

To prevent the analysis from looking for some defects, see “Choose Specific Defects”.

If you want to change your analysis configuration, you can still change which defects are
displayed in your results. There are two ways to filter defects from your results:

• Filter individual defects from display after each run.

For more information, see “Filter and Group Results”.
• Create a set of filters that you can apply in one sweep.

This example shows the second approach.

1 Select Tools > Preferences.
2 On the Review Scope tab, create your filter file.

a Select New. Save your filter file.
b If you want a defect to be suppressed from Results Summary, on the left pane,

under Defect, clear the box for the defect. Otherwise, on the right pane, specify
a percentage of defects to display. The default is 100%.

Instead of a percentage, you can specify a number or the string ALL. To specify a
number, clear the box Specify percentage of checks.

 Limit Display of Defects

5-17

5 View Results in the Polyspace Environment

5-18

3 Select Apply or OK.

On the Results Summary pane, the Show menu displays additional options.
4 Select the option corresponding to the filters that you want. Only the number or

percentage of defects that you specify remain on the Results Summary pane.

• If you specify an absolute number, Polyspace displays that number of defects.
• If you specify a percentage, Polyspace displays that percentage of the total

number of defects.

 Generate Reports

5-19

Generate Reports

This example shows how to generate reports for a Polyspace Bug Finder analysis.

1 Open your results file.
2 Select Reporting > Run Report.

The Run Report dialog box opens.

3 In the Select Reports section, select the types of reports that you want to generate.
Press the Ctrl key to select multiple types. For example, you can select BugFinder
and CodeMetrics.

4 Select the Output folder in which to save the report.
5 Select an Output format for the report.
6 Click Run Report.

5 View Results in the Polyspace Environment

5-20

The software creates the specified report and opens it.

See Also
“Generate report (C/C++)” | “Report template (C/C++)” | “Output format (C/C++)”

 Review and Comment Results

5-21

Review and Comment Results
This example shows how to review and comment your Bug Finder results. When
reviewing results, you can assign a status to the defects and enter comments to describe
the results of your review. These actions help you to track the progress of your review
and avoid reviewing the same defect twice.

Review and Comment Individual Defect

1 On the Results Summary pane, select the defect that you want to review.

The Check Details pane displays information about the current defect.

2 On the Results Summary pane, enter a Classification for the defect to describe its
severity:

• High

• Medium

• Low

• Not a defect

3 On the Results Summary pane, enter a Status to describe how you intend to
address the defect:

• Fix

• Improve

5 View Results in the Polyspace Environment

5-22

• Investigate

• Justified

• No action planned

• Other

4 On the Results Summary pane, enter remarks in the Comment field, for example,
defect or justification information.

Review and Comment Group of Defects

1 On the Results Summary pane, select a group of defects using one of the following
methods:

• For contiguous defects, select the first defect. Then Shift-select the last defect.

To group together the defects that belong to a certain category, click the Check
column header on the Results Summary pane.

• For non-contiguous defects, Ctrl-select each defect.

 Review and Comment Results

5-23

• For defects of a similar category, right-click one defect from that category. From
the context menu, select Select All Defect Category Checks, for example,
Select All "Memory leak" Checks.

2 On the Results Summary pane, enter Classification, Status and Comments.
The software applies this information to all the selected defects.

Save Review Comments

After you have reviewed your results, save your comments with the analysis results.
Saving your comments makes them available the next time that you open the results file,
allowing you to avoid reviewing the same check twice.

5 View Results in the Polyspace Environment

5-24

To save your review comments, select File > Save. Your comments are saved with the
analysis results.

Related Examples
• “Open Results”
• “Filter and Group Results”
• “Copy and Paste Annotations”

More About
• “Windows Used to Review Results”

 Review Code Metrics

5-25

Review Code Metrics

Polyspace does not compute code complexity metrics by default. To compute them during
analysis, do the following:

• User interface: On the Configuration pane, select Advanced Settings. Select
Calculate Code Metrics.

• Command line: Use the option -code-metrics with the polyspace-bug-
finder-nodesktop command.

After analysis, the software displays code complexity metrics on the Results Summary
pane. You can:

• Specify limits for the metric values through Tools > Preferences.

If you impose limits on metrics, the Results Summary pane displays only those
metric values that violate the limits. Use predefined limits or assign your own limits.
If you assign your own limits, you can share the limits file to enforce coding standards
in your organization.

• Justify the value of a metric.

If a metric value exceeds specified limits and appears red, you can add a comment
with the rationale.

You can also suppress code metrics from the Results Summary display. Select Show >
Defects & Rules.

For information on the metrics, see “Code Metrics”.

In this section...

“Impose Limits on Metrics” on page 5-25
“Comment and Justify Limit Violations” on page 5-28

Impose Limits on Metrics

1 Select Tools > Preferences.
2 On the Review Scope tab, do one of the following:

• To use a predefined limit, select Include Quality Objectives Scopes.

5 View Results in the Polyspace Environment

5-26

The Scope Name list shows the additional option HIS. Select the option to see
the limit values.

• To define your own limits, select New. Save your limits file.

On the left pane, under Code Metric, select the box for a metric. On the right
pane, specify a limit value for the metric. Other than Comment Density, limit
values are upper limits.

 Review Code Metrics

5-27

5 View Results in the Polyspace Environment

5-28

3 Select Apply or OK.

On the Results Summary pane, the Show menu displays additional options.

• If you use predefined limits, the option HIS appears. This option displays code
metrics only.

• If you define your own limits, the option corresponding to your limits file name
appears.

4 Select the option corresponding to the limits that you want. Only metric values that
violate your limits appear on the Results Summary pane.

Note: To enforce coding standards across your organization, share your limits file that
you saved in XML format.

People in your organization can use the Open button on the Review Scope tab and
navigate to the location of the XML file.

Comment and Justify Limit Violations

Once you use the Show menu to display only metrics that violate limits, you can review
each violation.

1 On the Results Summary pane, select Group by > Family.

The code metrics appear together under one node.
2 Expand the node. Select each violation.

• On the Results Summary pane, in the Information column, you can see the
metric value.

• On the Check Details pane, you can see the metric value and a brief description
of the metric.

For more detailed descriptions and examples, select the icon.
3 On the Results Summary pane, add a comment and justification describing why

the violation occurs. For more information, see “Review and Comment Results”.

 Import Comments from Previous Analyses

5-29

Import Comments from Previous Analyses

This example shows how to import review comments from previous analyses. By default,
Polyspace Bug Finder automatically imports comments from the previous analysis,
allowing you to avoid reviewing the same defect twice. However, you can also manually
import comments into the current review

Import Comments from Previous Analysis

1 Open your most recent results.
2 Select Tools > Import Comments.
3 Navigate to the folder containing your previous results.
4 Select the results file with extension .psbf, then click Open.

The review comments from the previous results are imported into the current
results, and the Import checks and comments report opens.

Change Preferences for Automatically Importing Comments

1 Select Tools > Preferences, which opens the Polyspace Preferences dialog box.
2 Select the Project and Results Folder tab.
3 Under Import comments, select or clear Automatically import comments from

last verification.
4 Click OK.

5 View Results in the Polyspace Environment

5-30

View Code Sequence Causing Defect

This example shows how to view the code sequence that is probably causing a defect. The
example uses the following code, which contains a Non-initialized pointer defect:

#include <stdlib.h>

 int* assign_value_and_return_address(int* prev, int val)

{

 int* pi;

 if (prev == NULL) {

 pi = (int*)malloc(sizeof(int));

 if (pi == NULL) return NULL;

 }

 *pi = val;

 /* Defect: Writing to uninitialized pointer */

 return pi;

}

The code is stored in a source file store_value.c.

1 Run a Polyspace Bug Finder analysis on store_value.c.
2 Open the results file with extension .psbf.
3 On the Results Summary pane, select the Non-initialized pointer defect.

• The code line containing the defect is highlighted in dark blue on the Source
pane. More information on the defect is available on the Check Details pane.

 View Code Sequence Causing Defect

5-31

• The following columns describe the sequence of code instructions causing the
defect:

a Event: Instruction causing the defect
b Scope: Function containing instruction
c Line: Line number of instruction

These instructions are also highlighted in medium blue on the Source pane.
The corresponding line numbers are marked by squares. Place your cursor over
a square to view a tooltip. The tooltip describes how the instruction is possibly
related to the defect.

• Other instructions that can possibly impact the defect are highlighted in light
blue on the Source pane. To see these instructions on the Check Details pane,
select the Variable trace check box.

4 To navigate to an instruction from the probable code sequence in the source code,
select the instruction on the Event column. The corresponding line is highlighted on
the Source pane.

Related Examples
• “Run Local Analysis”
• “View Results Summary in Polyspace Metrics”
• “Review and Comment Results”

More About
• “Source”
• “Check Details”

5 View Results in the Polyspace Environment

5-32

Results Folder Contents

Every time you run an analysis, Polyspace generates files and folders that contain
information about configuration options and analysis results. The contents of results
folders depend on the configuration options and how the analysis was started.

By default, your results are saved in your project folder in a folder called Result. To use
a different folder, see “Specify Results Folder”.

Files in the Results Folder

Some of the files and folders in the results folder are described below:

• Polyspace_release_project_name_date-time.log — A log file associated with
each analysis.

• ps_results.psbf — An encrypted file containing your Polyspace results. Open this
file in the Polyspace environment to view your results.

• ps_sources.db — A non-encrypted database file listing source files and macros.
• drs-template.xml — A template generated when you use constraint specification.
• ps_comments.db — An encrypted database file containing your comments and

justifications.
• comments_bak — A subfolder used to import comments between results.
• .status and .settings — Two folders used to store files needed to relaunch the

analysis.
• Polyspace-Doc — When you generate a report, by default, your report is saved in

this folder with the name ProjectName_ReportType. For example, a developer
report in Rich Text Format would be, myProject_Developer.rtf.

See Also
-results-dir

Related Examples
• “Specify Results Folder”
• “Open Results”

 Windows Used to Review Results

5-33

Windows Used to Review Results

In this section...

“Dashboard” on page 5-33
“Results Summary” on page 5-36
“Source” on page 5-38
“Check Details” on page 5-44

Dashboard

On the Source pane, the Dashboard tab provides statistics on the analysis results in a
graphical format.

When you open a results file in Polyspace, this tab is displayed by default. You can view
the following graphs:

• Code covered by analysis

From this graph you can obtain the following information:

• # Files analyzed: Ratio of analyzed files to total number of files. If a file contains
a compilation error, Polyspace Bug Finder does not analyze the file.

5 View Results in the Polyspace Environment

5-34

• # Functions analyzed: Ratio of analyzed functions to total number of functions
in the analyzed files. If the analysis of a function takes longer than a certain
threshold value, Polyspace Bug Finder does not analyze the function.

• # Lines of code: Total number of code lines in source files.
• # Lines without comments: Total number of code lines in source files excluding

lines that are only comments.
• # Header files: Total number of files included in your source files using

#include directive.
• Defect distribution by category or file

From this graph you can obtain the following information.

 Category File

Top 10 The ten defect types with the highest
number of individual defects.

• Each column represents a defect
type and is divided into the:

• File with highest number of
defects of this type.

• File with second highest number
of defects of this type.

• All other files with defects of this
type.

Place your cursor on a column to see
the file name and number of defects
of this type in this file.

The ten source files with the highest
number of defects.

• Each column represents a file and is
divided into the:

• Defect type with highest number
of defects in this file.

• Defect type with second highest
number of defects in this file.

• All other defect types in this file.

Place your cursor on a column to see
the defect type name and number of
defects of this type in this file.

 Windows Used to Review Results

5-35

 Category File

• The x-axis represents the number of
defects.

Use this view to organize your check
review starting at defect types with
more individual defects.

• The x-axis represents the number of
defects.

Use this view to organize your check
review starting at files with more
defects.

Bottom 10 The ten defect types with the lowest
number of individual defects. Each
column on the graph is divided the
same way as the Top 10 defect types.

Use this view to organize your check
review starting at defect types with
fewer individual defects.

The ten source files with the lowest
number of defects. Each column on the
graph is divided the same way as the
Top 10 files.

Use this view to organize your check
review starting at files with fewer
defects.

• Coding rule violations by rule or file

For every type of coding rule that you check (MISRA, JSF, or custom), the
Dashboard contains a graph of the rule violations.

From this graph you can obtain the following information.

 Category File

Top 10 The ten rules with the highest number
of violations.

• Each column represents a rule
number and is divided into the:

The ten source files containing the
highest number of violations.

• Each column represents a file and is
divided into the:

5 View Results in the Polyspace Environment

5-36

 Category File

• File with highest number of
violations of this rule.

• File with second highest number
of violations of this rule.

• All other files with violations of
this rule.

Place your cursor on a column to
see the file name and number of
violations of this rule in the file.

• The x-axis represents the number of
rule violations.

Use this view to organize your review
starting at rules with more violations.

• Rule with highest number of
violations in this file.

• Rule with second highest number
of violations in this file.

• All other rules violated in this
file.

Place your cursor on a column to
see the rule number and number of
violations of the rule in this file.

• The x-axis represents the number of
rule violations.

Use this view to organize your review
starting at files with more rule
violations.

Bottom 10 The ten rules with the lowest number
of violations. Each column on the graph
is divided in the same way as the Top
10 rules.

Use this view to organize your review
starting at rules with fewer violations.

The ten source files containing the
lowest number of rule violations. Each
column on the graph is divided in the
same way as the Top 10 files.

Use this view to organize your review
starting at files with fewer rule
violations.

For a list of supported coding rules, see “Supported MISRA C:2004 Rules”, “Supported
MISRA C++ Coding Rules” and “Supported JSF C++ Coding Rules”.

Results Summary

The Results Summary pane lists all defects along with their attributes. To organize
your results review, from the Group by list on this pane, select one of the following
options:

• None: Lists defects and coding rule violations in alphabetical order.
• Family: Lists results grouped by category. For more information on the defects

covered by a category, see “Polyspace Bug Finder Results”.

 Windows Used to Review Results

5-37

• Class: Lists results grouped by class. Within each class, the results are grouped
by method. The first group, Global Scope, lists results not occurring in a class
definition.

This option is available for C++ code only.
• File: Lists results grouped by file. Within each file, the results are grouped by

function.

For each defect, the Results Summary pane contains the defect attributes, listed in
columns:

Attribute Description

Family Group to which the defect belongs.
ID Unique identification number of the

defect. In the default view on the Results
Summary pane, the defects appear sorted
by this number.

Type Defect or coding rule violation.
Category Category of the defect. For more

information on the defects covered by
a category, see “Polyspace Bug Finder
Results”.

Check Description of the defect
File File containing the instruction where the

defect occurs
Class Class containing the instruction where the

defect occurs. If the defect is not inside a
class definition, then this column contains
the entry, Global Scope.

Function Function containing the instruction where
the defect occurs. If the function is a
method of a class, it appears in the format
class_name::function_name.

Classification Level of severity you have assigned to the
defect. The possible levels are:

• High

5 View Results in the Polyspace Environment

5-38

Attribute Description

• Medium

• Low

• Not a defect

Status Review status you have assigned to the
check. The possible statuses are:

• Fix

• Improve

• Investigate

• Justified

• No action planned

• Other

Comments Comments you have entered about the
check

To show or hide any of the columns, right-click anywhere on the column titles. From the
context menu, select or clear the title of the column that you want to show or hide.

Using this pane, you can:

• Navigate through the checks. For more information, see “Review and Comment
Results”.

• Organize your check review using filters on the columns. For more information, see
“Filter and Group Results”.

Source

The Source pane shows the source code with the defects colored in red and the
corresponding line number marked by .

 Windows Used to Review Results

5-39

Tooltips

Placing your cursor over a check displays a tooltip that provides range information for
variables, operands, function parameters, and return values.

Examine Source Code

On the Source pane, if you right-click a text string, the context menu provides options to
examine your code:

5 View Results in the Polyspace Environment

5-40

For example, if you right-click the variable i, you can use the following options to
examine and navigate through your code:

• Search "i" in Current Source — List occurrences of the string within the current
source file on the Search pane.

• Search "i" in All Source Files — List occurrences of the string within the source
files on the Search pane.

• Search For All References — List all references in the Search pane. The software
supports this feature for global and local variables, functions, types, and classes.

• Go To Definition — Go to the line of code that contains the definition of i. The
software supports this feature for global and local variables, functions, types, and
classes.

• Go To Line — Open the Go to line dialog box. If you specify a line number and click
Enter, the software displays the specified line of code.

• Expand All Macros or Collapse All Macros — Display or hide the content of
macros in current source file.

 Windows Used to Review Results

5-41

Expand Macros

You can view the contents of source code macros in the source code view. A code
information bar displays icons that identify source code lines with macros.

When you click a line with this icon, the software displays the contents of macros on that
line in a box.

5 View Results in the Polyspace Environment

5-42

To display the normal source code again, click the line away from the box, for example,
on the icon.

To display or hide the content of all macros:

1 Right-click anywhere on the source.
2 From the context menu, select either Expand All Macros or Collapse All Macros.

Note: The Check Details pane also allows you to view the contents of a macro if the
check you select lies within a macro.

Manage Multiple Files in Source Pane

You can view multiple source files in the Source pane.

Right-click on the Source pane toolbar.

 Windows Used to Review Results

5-43

From the Source pane context menu, you can:

• Close – Close the currently selected source file. You can also use the χ button to close
tabs.

• Close Others – Close all source files except the currently selected file.
• Close All – Close all source files.
• Next – Display the next view.
• Previous – Display the previous view.
• New Horizontal Group – Split the Source window horizontally to display the

selected source file below another file.
• New Vertical Group – Split the Source window vertically to display the selected

source file side-by-side with another file.
• Floating – Display the current source file in a new window, outside the Source pane.

View Code Block

On the Source pane, to highlight a block of code, click either its opening or closing brace.
If the brace itself is highlighted, click the brace twice.

5 View Results in the Polyspace Environment

5-44

Check Details

The Check Details pane contains comprehensive information about a specific defect. To
see this information, on the Results Summary pane, select the defect.

 Windows Used to Review Results

5-45

• The top right corner shows the file and function containing the defect, in the format
file_name/function_name.

• The yellow box contains the name of the defect with an explanation of why the defect
occurs.

• The Event column lists the sequence of code instructions causing the defect. The
Scope column lists the name of the function containing the instructions. The Line
column lists the line number of the instructions.

• The Variable trace check box allows you to see an additional set of instructions that
are related to the defect.

•
The button allows you to access documentation for the defect.

For more information, see “View Code Sequence Causing Defect”.

5 View Results in the Polyspace Environment

5-46

Bug Finder Defect Categories

In this section...

“Numerical” on page 5-46
“Static Memory” on page 5-46
“Dynamic Memory” on page 5-46
“Programming” on page 5-47
“Data-flow” on page 5-47
“Concurrency” on page 5-47
“Other” on page 5-48

Numerical

These defects are errors relating to variables in your code; their values, data types, and
usage. The defects include:

• Mathematical operations
• Conversion overflow
• Operational overflow

For specific defects, see “Numerical Defects”.

Static Memory

These defects are errors relating to memory usage when the memory is statically
allocated. The defects include:

• Accessing arrays outside their bounds
• Null pointers
• Casting of pointers

For specific defects, see “Static Memory Defects”.

Dynamic Memory

These defects are errors relating to memory usage when the memory is dynamically
allocated. The defects include:

 Bug Finder Defect Categories

5-47

• Freeing dynamically allocated memory
• Unprotected memory allocations

For specific defects, see “Dynamic Memory Defects”.

Programming

These defects are errors relating to programming syntax. These defects include:

• Assignment versus equality operators
• Mismatches between variable qualifiers or declarations
• Badly formatted strings

For specific defects, see “Programming Defects”

Data-flow

These defects are errors relating to how information moves throughout your code. The
defects include:

• Dead or unreachable code
• Unused code
• Non-initialized information

For the specific defects, see “Data-flow Defects”.

Concurrency

These defects are related to multitasking code. To find these defects, you must specify
the multitasking options before analysis. To specify these options, on the Configuration
pane, select Multitasking.

Data Race Defects

The data race defects occur when multiple tasks operate on a shared variable without
protection. For the defect to occur:

• One of the operations must be a write operation.
• The operations must not be protected by the same mechanism.

5 View Results in the Polyspace Environment

5-48

For the specific defects, see “Concurrency Defects”.

Locking Defects

The locking defects occur when the critical sections are not set up appropriately. For
example:

• The critical sections are involved in a deadlock.
• A lock function does not have the corresponding unlock function.
• A lock function is called twice without an intermediate call to an unlock function.

Critical sections protect shared variables from concurrent access. Polyspace expects
critical sections to follow a certain format. The critical section must lie between a call to a
lock function and a call to an unlock function.

For the specific defects, see “Concurrency Defects”.

Other

These defects are those that do not fit into the other categories. They can be thing from
race conditions to pass-by-value errors.

For specific defects, see “Other Defects”.

 Common Weakness Enumeration from Bug Finder Defects

5-49

Common Weakness Enumeration from Bug Finder Defects

In this section...

“Common Weakness Enumeration” on page 5-49
“Polyspace Bug Finder and CWE Compatibility” on page 5-49

Common Weakness Enumeration

Common Weakness Enumeration (CWE™) is a dictionary of common software
weaknesses that can occur in software architecture, design, code, or implementation.
These weaknesses can lead to security vulnerabilities.

The dictionary assigns a unique identifier to each software weakness. Therefore, this
dictionary serves as a common language for describing software security weaknesses, and
a standard for software security tools targeting these weaknesses.

For more information, see Common Weakness Enumeration.

Polyspace Bug Finder and CWE Compatibility

With Polyspace Bug Finder, you can check and document whether your software contains
weaknesses listed in the CWE dictionary. Polyspace Bug Finder supports some aspects of
the CWE Compatibility and Effectiveness Program:

CWE Compatibility Requirement Polyspace Bug Finder Support

CWE Searchable You can list instances of a software
weakness corresponding to a certain CWE
identifier.

For more information, see “Filter CWE
Identifiers”.

CWE Output • You can view CWE identifiers
corresponding to certain Polyspace Bug
Finder defects.

For more information, see “View CWE
Identifiers”.

http://cwe.mitre.org/

5 View Results in the Polyspace Environment

5-50

CWE Compatibility Requirement Polyspace Bug Finder Support

• You can include CWE identifiers
corresponding to Polyspace Bug Finder
defects in your report.

For more information, see “Generate
Report with CWE Identifiers”.

For more information on the CWE Compatibility and Effectiveness Program, see CWE
Compatibility.

Related Examples
• “Find CWE Identifiers from Defects”

More About
• “Mapping Between CWE Identifiers and Defects”

https://cwe.mitre.org/compatible/
https://cwe.mitre.org/compatible/

 Find CWE Identifiers from Defects

5-51

Find CWE Identifiers from Defects

This example shows how to check whether your software has weaknesses listed by
the Common Weakness Enumeration or CWE dictionary. The dictionary assigns a
unique identifier to each software weakness. When a Polyspace Bug Finder result can
be associated with CWE identifiers, the software displays those identifiers for the result.
Using the identifiers, you can evaluate your code against CWE standards.

In this section...

“View CWE Identifiers” on page 5-51
“Filter CWE Identifiers” on page 5-51
“Generate Report with CWE Identifiers” on page 5-51

View CWE Identifiers

To view the CWE identifiers for defects on the Results Summary pane:

1 Right-click any column header.
2 Select CWE ID.

Filter CWE Identifiers

To filter a particular CWE identifier:

1
On the CWE ID column, click the icon.

2 From the drop-down list, select Custom.
3 From the Condition drop-down list, select contains.
4 In the Value field, enter the CWE ID that you want to filter. Click OK.

Generate Report with CWE Identifiers

To generate a report containing CWE identifiers, do the following.

• To enable report generation before analysis:

1 On the Configuration pane, select Reporting.

5 View Results in the Polyspace Environment

5-52

2 Select Generate report.
3 From the Report template list, select BugFinder_CWE.

• To generate a report after analysis:

1 Open your results.
2 Select Reporting > Run Report.
3 From the Select Reports list, select BugFinder_CWE.

More About
• “Common Weakness Enumeration from Bug Finder Defects”
• “Mapping Between CWE Identifiers and Defects”

 Mapping Between CWE Identifiers and Defects

5-53

Mapping Between CWE Identifiers and Defects

The following table lists the CWE IDs addressed by Polyspace Bug Finder and the
corresponding defects.

CWE ID Polyspace Bug Finder Defect

119 Array access out of bounds

Pointer access out of bounds
120 Invalid use of standard library memory routine

Invalid use of standard library string routine
134 Format string specifiers and arguments mismatch
170 Missing null in string array
188 Array access out of bounds

Pointer access out of bounds

Unreliable cast of pointer
190 Integer conversion overflow

Integer overflow

Shift operation overflow

Unsigned integer overflow
191 Integer conversion overflow

Integer overflow

Unsigned integer overflow
194 Sign change integer conversion overflow
195 Integer conversion overflow

Sign change integer conversion overflow
196 Integer conversion overflow

Sign change integer conversion overflow

http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/134.html
http://cwe.mitre.org/data/definitions/170.html
http://cwe.mitre.org/data/definitions/188.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/191.html
http://cwe.mitre.org/data/definitions/194.html
http://cwe.mitre.org/data/definitions/195.html
http://cwe.mitre.org/data/definitions/196.html

5 View Results in the Polyspace Environment

5-54

CWE ID Polyspace Bug Finder Defect

197 Integer conversion overflow
244 Memory leak
252 Missing or invalid return statement
253 Missing or invalid return statement
366 Data race including atomic operations

Data race
369 Float division by zero

Integer division by zero
393 Missing or invalid return statement
394 Missing or invalid return statement
398 Write without further read
401 Memory leak
404 Invalid deletion of pointer

Invalid free of pointer

Memory leak
415 Deallocation of previously deallocated pointer
416 Use of previously freed pointer
456 Non-initialized pointer

Non-initialized variable
457 Non-initialized pointer

Non-initialized variable
466 Array access out of bounds

Pointer access out of bounds
467 Wrong type used in sizeof

http://cwe.mitre.org/data/definitions/197.html
http://cwe.mitre.org/data/definitions/244.html
http://cwe.mitre.org/data/definitions/252.html
http://cwe.mitre.org/data/definitions/253.html
http://cwe.mitre.org/data/definitions/366.html
http://cwe.mitre.org/data/definitions/369.html
http://cwe.mitre.org/data/definitions/393.html
http://cwe.mitre.org/data/definitions/394.html
http://cwe.mitre.org/data/definitions/398.html
http://cwe.mitre.org/data/definitions/401.html
http://cwe.mitre.org/data/definitions/404.html
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/416.html
http://cwe.mitre.org/data/definitions/456.html
http://cwe.mitre.org/data/definitions/457.html
http://cwe.mitre.org/data/definitions/466.html
http://cwe.mitre.org/data/definitions/467.html

 Mapping Between CWE Identifiers and Defects

5-55

CWE ID Polyspace Bug Finder Defect

468 Array access out of bounds

Pointer access out of bounds

Unreliable cast of pointer
476 Null pointer
481 Invalid use of = (assignment) operator
482 Invalid use of == (equality) operator
489 Code deactivated by constant false condition
561 Dead code

Uncalled function

Unreachable code

Useless if
563 Write without further read
588 Array access out of bounds

Pointer access out of bounds
590 Invalid free of pointer
617 Assertion
628 Declaration mismatch
667 Missing unlock
681 Float conversion overflow
685 Declaration mismatch
686 Declaration mismatch
761 Invalid free of pointer
762 Invalid free of pointer
764 Double lock
765 Double unlock
789 Unprotected dynamic memory allocation

http://cwe.mitre.org/data/definitions/468.html
http://cwe.mitre.org/data/definitions/476.html
http://cwe.mitre.org/data/definitions/481.html
http://cwe.mitre.org/data/definitions/482.html
http://cwe.mitre.org/data/definitions/489.html
http://cwe.mitre.org/data/definitions/561.html
http://cwe.mitre.org/data/definitions/563.html
http://cwe.mitre.org/data/definitions/588.html
http://cwe.mitre.org/data/definitions/590.html
http://cwe.mitre.org/data/definitions/617.html
http://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/667.html
http://cwe.mitre.org/data/definitions/681.html
http://cwe.mitre.org/data/definitions/685.html
http://cwe.mitre.org/data/definitions/686.html
http://cwe.mitre.org/data/definitions/761.html
http://cwe.mitre.org/data/definitions/762.html
https://cwe.mitre.org/data/definitions/764.html
https://cwe.mitre.org/data/definitions/765.html
http://cwe.mitre.org/data/definitions/789.html

5 View Results in the Polyspace Environment

5-56

CWE ID Polyspace Bug Finder Defect

823 Array access out of bounds

Pointer access out of bounds
824 Non-initialized pointer
832 Missing lock
833 Deadlock
873 Invalid use of floating point operation

Float overflow
908 Non-initialized pointer

Non-initialized variable

http://cwe.mitre.org/data/definitions/823.html
http://cwe.mitre.org/data/definitions/824.html
https://cwe.mitre.org/data/definitions/832.html
https://cwe.mitre.org/data/definitions/833.html
http://cwe.mitre.org/data/definitions/873.html
http://cwe.mitre.org/data/definitions/908.html

6

Command-Line Analysis

• “Create Project Automatically at Command Line” on page 6-2
• “Run Local Analysis from Command Line” on page 6-3
• “Run Remote Analysis at Command Line” on page 6-5
• “Create Project Automatically from MATLAB Command Line” on page 6-9

6 Command-Line Analysis

6-2

Create Project Automatically at Command Line

If you use build automation scripts to build your source code, you can automatically setup
a Polyspace project from your scripts. The automatic project setup runs your automation
scripts to determine:

• Source files.
• Includes.
• Target & compiler options. For more information on these options, see:

• C Code: “Target & Compiler”
• C++ Code: “Target & Compiler”

Use the polyspace-configure command to trace your build automation scripts. You
can use the trace information to:

• Create a Polyspace project. You can then open the project in the user interface.

Example: If you use the command make targetName buildOptions to
build your source code, use the following command to create a Polyspace project
myProject.psprj from your makefile:

polyspace-configure -prog myProject make targetName buildOptions

For the list of options allowed with the GNU make, see make options.
• Create an options file. You can then use the options file to run verification on your

source code from the command-line.

Example: If you use the command make targetName buildOptions to build your
source code, use the following commands to create an options file myOptions from
your makefile:

polyspace-configure -no-project -output-options-file myOptions ...

 make targetName buildOptions

Use the options file to run verification:

polyspace-bug-finder-nodesktop -options-file myOptions

You can also use advanced options to modify the default behavior of polyspace-
configure. For more information, see the -options value argument for
polyspaceConfigure.

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html

 Run Local Analysis from Command Line

6-3

Run Local Analysis from Command Line

To run an analysis from a DOS or UNIX command window, use the command
polyspace-bug-finder-nodesktop followed by other options you wish to use.

Note: To run Bug Finder from the MATLAB Command Window, use the command
polyspaceBugFinder [options]

In this section...

“Specify Sources and Analysis Options Directly” on page 6-3
“Specify Sources and Analysis Options in Text File” on page 6-4
“Create Options File from Build System” on page 6-4

Specify Sources and Analysis Options Directly

At the Windows, Linux or Mac OS X command-line, append sources and analysis options
to the polyspace-bug-finder-nodesktop command.

For instance:

• To specify the target processor, use the -target option. For instance, to specify the
m68k processor for your source file file.c, use the command:

polyspace-bug-finder-nodesktop -sources "file.c" -lang c -target m68k

• To check for violation of MISRA C rules, use the -misra2 option. For instance,
to check for only the required MISRA C rules on your source file file.c, use the
command:

polyspace-bug-finder-nodesktop -sources "file.c" -misra2 required-rules

For the full list of analysis options, see “Analysis Options for C” or “Analysis Options for
C++”.

You can also enter the following at the command line:

polyspace-bug-finder-nodesktop -help

6 Command-Line Analysis

6-4

Specify Sources and Analysis Options in Text File

1 Create an options file called listofoptions.txt with your options. For example:

#These are the options for MyBugFinderProject

-lang c

-prog MyBugFinderProject

-author jsmith

-sources "mymain.c,funAlgebra.c,funGeometry.c"

-OS-target no-predefined-OS

-target x86_64

-dialect none

-dos

-misra2 required-rules

-includes-to-ignore all-headers

-checkers default

-disable-checkers concurrency

-results-dir C:\Polyspace\MyBugFinderProject

2 Run Polyspace using options in the file listofoptions.txt.

polyspace-bug-finder-nodesktop -options-file listofoptions.txt

Create Options File from Build System

1 Create a list of Polyspace options using the configuration tool.

polyspace-configure -c -no-project -output-options-file \

 myOptions make -B myCode

2 Run Polyspace Bug Finder using the options read from your build.

polyspace-bug-finder-nodesktop -options-file myOptions \

 -results-dir myResults

3 Open the results in the Bug Finder interface.

polyspace-bug-finder myResults

 Run Remote Analysis at Command Line

6-5

Run Remote Analysis at Command Line

Before you run a remote analysis, you must set up a server for this purpose. For more
information, see “Set Up Server for Remote Verification and Analysis”.

In this section...

“Run Remote Analysis” on page 6-5
“Manage Remote Analysis” on page 6-6
“Download Results” on page 6-8

Run Remote Analysis

Use the following command to run a remote verification:

MATLAB_Install\polyspace\bin\polyspace-bug-finder-nodesktop

-batch -scheduler NodeHost | MJSName@NodeHost [options]

where:

• MATLAB_Install is your MATLAB installation folder.
• NodeHost is the name of the computer that hosts the head node of your MDCS

cluster.
• MJSName is the name of the MATLAB Job Scheduler (MJS) on the head node host.
• options are the analysis options. These options are the same as that of a local

analysis. For more information, see “Run Local Analysis from Command Line”.

After compilation, the software submits the verification job to the cluster and provides
you a job ID. Use the polyspace-jobs-manager command with the job ID to
monitor your verification and download results after verification is complete. For more
information, see:

• “Manage Remote Analysis” on page 6-6
• “Download Results” on page 6-8

Tip In Windows, to avoid typing the commands each time, you can save the commands in
a batch file.

6 Command-Line Analysis

6-6

1 Save your analysis options in a file listofoptions.txt. See “Specify Sources and
Analysis Options in Text File”.
To specify your sources, in the options file, instead of -sources, use -sources-list-
file. This option is available only for remote analysis and allows you to specify your
sources in a separate text file.

2 Create a file launcher.bat in a text editor like Notepad.
3 Enter the following commands in the file.

echo off

set POLYSPACE_PATH=C:\Program Files\MATLAB\R2015a\polyspace\bin

set RESULTS_PATH=C:\Results

set OPTIONS_FILE=C:\Options\listofoptions.txt

"%POLYSPACE_PATH%\polyspace-bug-finder-nodesktop.exe" -batch -scheduler localhost

 -results-dir "%RESULTS_PATH%" -options-file "%OPTIONS_FILE%"

pause

4 Replace the definitions of the following variables in the file:
• POLYSPACE_PATH: Enter the actual location of the .exe file.
• RESULTS_PATH: Enter the path to a folder. The files generated during

compilation are saved in the folder.
• OPTIONS_FILE: Enter the path to the file listofoptions.txt.
Replace localhost with the name of the computer that hosts the head node of your
MDCS cluster.

5 Double-click launcher.bat to run the verification.

If you run a Polyspace verification, a .bat file is automatically generated for you. You
can relaunch verification using this file.

Manage Remote Analysis

To manage remote analyses, use this command:

MATLAB_Install\polyspace\bin\polyspace-jobs-manager action [options]

 [-scheduler schedulerOption]

where:

• MATLAB_Install is your MATLAB installation folder
• schedulerOption is one of the following:

 Run Remote Analysis at Command Line

6-7

• Name of the computer that hosts the head node of your MDCS cluster (NodeHost).
• Name of the MJS on the head node host (MJSName@NodeHost).
• Name of a MATLAB cluster profile (ClusterProfile).

For more information about clusters, see “Clusters and Cluster Profiles”

If you do not specify a job scheduler, polyspace-job-manager uses the scheduler
specified in the Polyspace Preferences > Server Configuration > Job scheduler
host name.

• action [options] refer to the possible action commands to manage jobs on the
scheduler:

Action Options Task

listjobs None Generate a list of Polyspace jobs on the
scheduler. For each job, the software produces
the following information:

• ID — Verification or analysis identifier.
• AUTHOR — Name of user that submitted

job.
• APPLICATION — Name of Polyspace

product, for example, Polyspace Code
Prover or Polyspace Bug Finder.

• LOCAL_RESULTS_DIR — Results folder
on local computer, specified through
the Tools > Preferences > Server
Configuration tab.

• WORKER — Local computer from which job
was submitted.

• STATUS — Status of job, for example,
running and completed.

• DATE — Date on which job was submitted.
• LANG — Language of submitted source

code.
download

6 Command-Line Analysis

6-8

Action Options Task

-job ID -results-
folder FolderPath

Download results of analysis with specified ID
to folder specified by FolderPath.

getlog -job ID Open log for job with specified ID.
remove -job ID Remove job with specified ID.

Download Results

To download verification results from the command line, use the polyspace-jobs-
manager command:
MATLAB_Install\polyspace\bin\polyspace-jobs-manager -download

-job Verification_ID -results-folder FolderPath

After downloading results, use the Polyspace user interface to view the results. See
“Open Results”.

 Create Project Automatically from MATLAB Command Line

6-9

Create Project Automatically from MATLAB Command Line

If you use build automation scripts to build your source code, you can automatically setup
a Polyspace project from your scripts. The automatic project setup runs your automation
scripts to determine:

• Source files.
• Includes.
• Target & compiler options. For more information on these options, see:

• C Code: “Target & Compiler”
• C++ Code: “Target & Compiler”

Use the polyspaceConfigure command to trace your build automation scripts. You can
use the trace information to:

• Create a Polyspace project. You can then open the project in the user interface.

Example: If you use the command make targetName buildOptions to
build your source code, use the following command to create a Polyspace project
myProject.psprj from your makefile:

polyspaceConfigure -prog myProject ...

 make targetName buildOptions

• Create an options file. You can then use the options file to run verification on your
source code from the command-line.

Example: If you use the command make targetName buildOptions to build your
source code, use the following commands to create an options file myOptions from
your makefile:

polyspaceConfigure -no-project -output-options-file myOptions ...

 make targetName buildOptions

Use the options file to run verification:

polyspaceBugFinder -options-file myOptions

You can also use advanced options to modify the default behavior of
polyspaceConfigure. For more information, see polyspaceConfigure.

7

Polyspace Bug Finder Analysis in
Simulink

• “Embedded Coder Considerations” on page 7-2
• “TargetLink Considerations” on page 7-5
• “Generate and Analyze Code” on page 7-7
• “Main Generation for Model Analysis” on page 7-9
• “Review Generated Code Results” on page 7-11
• “Troubleshoot Back to Model” on page 7-13

7 Polyspace Bug Finder Analysis in Simulink

7-2

Embedded Coder Considerations

In this section...

“Default Options” on page 7-2
“Recommended Polyspace Bug Finder Options for Analyzing Generated Code” on page
7-3
“Hardware Mapping Between Simulink and Polyspace” on page 7-4

Default Options

For Embedded Coder® code, the software sets certain analysis options by default.

Default options for C:

-sources path_to_source_code

-results-dir results

-D PST_ERRNO

-D main=main_rtwec __restrict__=

-I matlabroot\polyspace\include

-I matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include

-I matlabroot\sys\lcc\include

-OS-target no-predfined-OS

-ignore-constant-overflows true

-scalar-overflows-behavior wrap-around

-allow-negative-operand-in-shift true

-boolean-types boolean_T

-functions-to-stub=[rtIsNaN,rtIsInf,rtIsNaNF,rtIsInfF]

Default options for C++:

-sources path_to_source_code

-results-dir results

-D PST_ERRNO

-D main=main_rtwec __restrict__=

-I matlabroot\polyspace\include

-I matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include

-I matlabroot\sys\lcc\include

 Embedded Coder Considerations

7-3

-OS-target no-predfined-OS

-dialect iso

-ignore-constant-overflows true

-scalar-overflows-behavior wrap-around

-allow-negative-operand-in-shift true

-functions-to-stub=[rtIsNaN,rtIsInf,rtIsNaNF,rtIsInfF]

Note: matlabroot is the MATLAB installation folder.

Recommended Polyspace Bug Finder Options for Analyzing Generated
Code

For Embedded Coder code, you can specify other analysis options for your Polyspace
Project through the Polyspace Configuration pane. To open this pane:

1 In the Simulink® model window, select Code > Polyspace > Options. The
Polyspace pane opens.

2 Click Configure. The Polyspace Configuration pane opens.

The following table describes options that you should specify in your Polyspace project
before analyzing code generated by Embedded Coder software.

Option Recommended
Value

Comments

Macros > Preprocessor
definitions

-D

See comments Defines macro compiler flags used during
compilation. Some defines are applied by
default, depending on your -OS-target.

Use one -D for each line of the Embedded
Coder generated defines.txt file.

Polyspace does not do this by default.
Target & Compiler > Target
operating system

-OS-target

Visual Specifies the operating system target for
Polyspace stubs.

This information allows the analysis to use
system definitions during preprocessing to
analyze the included files.

7 Polyspace Bug Finder Analysis in Simulink

7-4

Option Recommended
Value

Comments

Environment Settings >
Code from DOS or Windows
file system

-dos

On You must select this option if the contents of
the include or source directory comes from
a DOS or Windows file system. The option
allows the analysis to deal with upper/lower
case sensitivity and control characters issues.

Concerned files are:

• Header files – All include folders specified
(-I option)

• Source files – All source files selected for
the analysis (-sources option)

Hardware Mapping Between Simulink and Polyspace

The software automatically imports target word lengths and byte ordering (endianess)
from Simulink model hardware configuration settings. The software maps Device
vendor and Device type settings on the Simulink Configuration Parameters >
Hardware Implementation pane to Target processor type settings on the Polyspace
Configuration pane.

The software creates a generic target for the analysis.

 TargetLink Considerations

7-5

TargetLink Considerations

In this section...

“TargetLink Support” on page 7-5
“Default Options” on page 7-5
“Lookup Tables” on page 7-6
“Code Generation Options” on page 7-6

TargetLink Support

For Windows, Polyspace Bug Finder is tested with releases 3.4 and 3.5 of the dSPACE®

Data Dictionary version and TargetLink® Code Generator.

As Polyspace Bug Finder extracts information from the dSPACE Data Dictionary, you
must regenerate the code before performing an analysis.

Default Options

The following default options are set by Polyspace:

-sources path_to_source_code

-results-dir results

-I path to source code

-D PST_ERRNO

-I dspaceroot\matlab\TL\SimFiles\Generic

-I dspaceroot\matlab\TL\srcfiles\Generic

-I dspaceroot\matlab\TL\srcfiles\i86\LCC

-I matlabroot\polyspace\include

-I matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include

-I matlabroot\sys\lcc\include

-functions-to-stub=[rtIsNaN,rtIsInf,rtIsNaNF,rtIsInfF]

-OS-target no-predfined-OS

-ignore-constant-overflows

-scalar-overflows-behavior wrap-around

-boolean-types Bool

7 Polyspace Bug Finder Analysis in Simulink

7-6

Note: dspaceroot and matlabroot are the dSPACE and MATLAB tool installation
directories respectively.

Lookup Tables

The tool by default provides stubs for the lookup table functions. This behavior can be
disabled from the Polyspace menu. The dSPACE data dictionary is used to define the
range of their return values. Note that a lookup table that uses extrapolation will return
full range for the type of variable that it returns.

Code Generation Options

From the TargetLink Main Dialog, it is recommended to set the option Clean code and
deselect the option Enable sections/pragmas/inline/ISR/user attributes.

When installing Polyspace, the tlcgOptions variable has been updated with
'PolyspaceSupport', 'on' (see variable in 'C:\dSPACE\Matlab\Tl\config
\codegen\tl_pre_codegen_hook.m' file).

Related Examples
• “Run Analysis for TargetLink” on page 10-6

External Web Sites
• dSPACE – TargetLink

http://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm

 Generate and Analyze Code

7-7

Generate and Analyze Code

This example shows you how to use Polyspace Bug Finder to analyze submodels and S-
Functions.

Open the Example

1 Open the example model.

psdemo_model_link_sl

7 Polyspace Bug Finder Analysis in Simulink

7-8

Generate and Analyze Code

1 Double-click the Re-install Demo block to install the S-Function
Command_Strategy.c.

2 Right-click the controller subsystem.
3 From the context-menu, select C/C++ Code > Build This Subsystem.
4 In the dialog box that pops up, select Build.
5 After the build is completed, right-click the controller subsytem.
6 From the context menu, select Polyspace > Verify Code Generated for >

Selected Subsystem to start the analysis. You can monitor progress from the
Command Window.

7 Once the analysis is complete, right-click the controller subsystem.
8 From the context menu, select Polyspace > Open Results. The results open in the

Polyspace environment.

 Main Generation for Model Analysis

7-9

Main Generation for Model Analysis

When you run an analysis, the software automatically reads the following information
from the model:

• initialize() functions
• terminate() functions
• step() functions
• List of parameter variables
• List of input variables

The software then uses this information to generate a main function that:

1 Initializes parameters using the Polyspace option -variables-written-before-
loop.

2 Calls initialization functions using the option -functions-called-before-loop.
3 Initializes inputs using the option -variables-written-in-loop.
4 Calls the step function using the option -functions-called-in-loop.
5 Calls the terminate function using the option -functions-called-after-loop.

If the codeInfo for the model does not contain the names of the inputs, the software
considers all variables as entries, except for parameters and outputs.

For C++ code that is generated with Embedded Coder, the initialize(), step(), and
terminate() functions are either class methods or have global scope. These different
scopes contain the associated variables.

• For class methods in the generated code, the variables that are written before and in
the loop refer to the class members.

• For functions with global scope, the associated variables are also in the global scope.

main for Generated Code

The following example shows the main generator options that the software uses to
generate the main function for code generated from a Simulink model.
init parameters \\ -variables-written-before-loop

init_fct() \\ -functions-called-before-loop

 while(1){ \\ start main loop

 init inputs \\ -variables-written-in-loop

7 Polyspace Bug Finder Analysis in Simulink

7-10

 step_fct() \\ -functions-called-in-loop

}

terminate_fct() \\ -functions-called-after-loop

 Review Generated Code Results

7-11

Review Generated Code Results

After you run a Polyspace analysis on generated code, you review the results from the
Polyspace environment. From the results you can link back to the related blocks in your
model.

1 Open the results using one of the following methods.

• If you analyzed the whole model, from the Simulink toolbar, select Code >
Polyspace > Open Results.

If you set Model reference verification depth to All and selected Model by
model verification. The Select the Result Folder to Open in Polyspace
dialog box opens showing a hierarchy of referenced models from which the
software generates code. To view the analysis results for a specific model, select
the model from the hierarchy. Then click OK.

• If you want to open results for a Model block or subsystem, right-click the Model
block or subsystem, and from the context menu, select Polyspace > Open
Results.

• From the Polyspace Interface, select File > Open and navigate to your results.
• If you selected Add to results repository the results are stored on the

Polyspace Metrics server. See “Download Results From Polyspace Metrics” on
page 5-5.

2 On the Results Summary tab, select a result.

When you select a result, the Check Details pane shows additional information
about the defect, including traceback information (if available).

3 Look at the result in the Source pane. Your select result is highlighted in the source
code.

4 Hover over the result in the source code. The tooltip can provide additional
information including variable ranges.

5 Above the defect, click a blue underlined link. For example, <Root>/Relational
Operator.

The Simulink model opens, highlighting the block related to the nearby source
code. This back-to-model linking allows you to fix defects in the model instead of the
generated code.

7 Polyspace Bug Finder Analysis in Simulink

7-12

Related Examples
• “View Results”
• “Polyspace Bug Finder Results”

More About
• “Troubleshoot Back to Model” on page 7-13

 Troubleshoot Back to Model

7-13

Troubleshoot Back to Model

In this section...

“Back-to-Model Links Do Not Work” on page 7-13
“Your Model Already Uses Highlighting” on page 7-13

Back-to-Model Links Do Not Work

You may encounter issues with the back-to-model feature if:

• Your operating system is Windows Vista™ or Windows 7; and User Account Control
(UAC) is enabled or you do not have administrator privileges.

• You have multiple versions of MATLAB installed.

To reconnect MATLAB and Polyspace:

1 Close Polyspace.
2 At the MATLAB command-line, enter PolySpaceEnableCOMserver.

When you open your Polyspace results, the hyper-links will highlight the relevant
blocks in your model.

Your Model Already Uses Highlighting

If your model extensively uses block coloring, the coloring from this feature may interfere
with the colors already in your model. To change the color of blocks when they are linked
to Polyspace results use this command:

HILITE_DATA = struct('HiliteType', 'find', 'ForegroundColor', 'black', ...

 'BackgroundColor', color);

set_param(0, 'HiliteAncestorsData', HILITE_DATA)

Where color is one of the following:

• 'cyan'

• 'magenta'

• 'orange'

• 'lightBlue'

7 Polyspace Bug Finder Analysis in Simulink

7-14

• 'red'

• 'green'

• 'blue'

• 'darkGreen'

8

Configure Model for Code Analysis

• “Configure Simulink Model” on page 8-2
• “Recommended Model Settings for Code Analysis” on page 8-3
• “Check Simulink Model Settings” on page 8-6
• “Annotate Blocks for Known Results” on page 8-12

8 Configure Model for Code Analysis

8-2

Configure Simulink Model

Before analyzing your generated code, there are certain settings that you should apply to
your model. Use the following workflow to prepare your model for code analysis.

• If you know of results ahead of time, annotate your blocks with Polyspace
annotations.

• Set the recommended configuration parameters.
• Double-check your model settings.
• Generate code.
• Set up your Polyspace options.

 Recommended Model Settings for Code Analysis

8-3

Recommended Model Settings for Code Analysis

For Polyspace analyses, set the following parameter configurations before generating
code.

Grouping Parameter Recommended
value

Name and Location in Configuration If you do
not use
recommendation

SystemTargetFileAn
Embedded
Coder Target
Language
Compiler
(TLC) file.
For example
ert.tlc or
autosar.tlc.

Location: Code Generation

Name: System target file

Value: Embedded Coder target file

Error

MatFileLogging'off' Location: Code Generation >
Interface

Name: MAT-file logging

Value: Not selected

Warning

GenerateReport'on' Location: Code Generation > Report

Name: Create code-generation
report

Value: Selected

Error

IncludeHyperlinksInReport'on' Location: Code Generation > Report

Name: Code-to-model

Value: Selected

Error

Code
Generation

GenerateSampleERTMain'off' Location: Code Generation >
Templates

Name: Generate an example main
program

Warning

8 Configure Model for Code Analysis

8-4

Grouping Parameter Recommended
value

Name and Location in Configuration If you do
not use
recommendation

Value: Not selected
GenerateComments'on' Location: Code Generation >

Comments

Name: Include comments

Value: Selected

Warning

InlineParams 'on' Location: Optimization > Signals
and Parameters

Name: Inline parameters

Value: Selected

Warning

InitFltsAndDblsToZero'on' Location: Optimization

Name: Use memset to initialize
floats and doubles to 0.0

Value: Not selected

Warning

Optimization

ZeroExternalMemoryAtStartup'on' when
Configuration
Parameters
> Polyspace
> Data
Range
Management
> Output
is Global
assert

Location: Optimization

Name: Remove root level I/O zero
initialization

Value: Not selected

Warning

Solver

SolverType 'Fixed-

Step'

Location: Solver

Name: Type

Value: Fixed-step

Warning

 Recommended Model Settings for Code Analysis

8-5

Grouping Parameter Recommended
value

Name and Location in Configuration If you do
not use
recommendation

Solver 'FixedStepDiscrete'Location: Solver

Name: Solver

Value: discrete (no continuous
states)

Warning

8 Configure Model for Code Analysis

8-6

Check Simulink Model Settings

With the Polyspace plug-in, you can check your model settings before generating code
or before starting an analysis. If you alter your model settings, rebuild the model to
generate fresh code. If the generated code version does not match your model version,
warnings appear when you run the analysis.

Check Simulink Model Settings Using the Code Generation Advisor

Before generating code, you can check your model settings against the “Recommended
Model Settings for Code Analysis” on page 8-3. If you do not use the recommended model
settings, the back-to-model linking will not work correctly.

1 From the Simulink model window, select Code > C/C++ Code > Code Generation
Options. The Configuration Parameters dialog box opens, displaying the Code
Generation pane.

2 Select Set Objectives.
3 From the Set Objective – Code Generation Advisor window, add the Polyspace

objective and any others that you want to check.
4 In the Check model before generating code drop-down list, select either:

• On (stop for warnings), the process stops for either errors or warnings
without generating code.

• On (proceed with warnings), the process stops for errors, but continues
generating code if the configuration only has warnings.

5 Select Check Model.

The software runs a configuration check. If your configuration check finds errors or
warnings, the Diagnostics Viewer displays the issues and recommendations.

 Check Simulink Model Settings

8-7

Check Simulink Model Settings Before Analysis

With the Polyspace plug-in, you can check your model settings before starting an
analysis:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace pane.

2 Click Check configuration. If your model settings are not optimal for Polyspace,
the software displays warning messages with recommendations.

8 Configure Model for Code Analysis

8-8

3 From the Check configuration before verification menu, select either:

• On (stop for warnings), the analysis stops for either errors or warnings.
• On (proceed with warnings), the analysis stops for errors, but continues the

code analysis if the configuration only has warnings.
4 Select Run verification.

The software runs a configuration check. If your configuration check finds errors or
warnings, the Diagnostics Viewer displays the issues and recommendations.

 Check Simulink Model Settings

8-9

If you alter your model settings, rebuild the model to generate fresh code. If the
generated code version does not match your model version, the software produces
warnings when you run the analysis.

Check Simulink Model Settings Automatically

With the Polyspace plug-in, you can check your model settings before starting an
analysis:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace pane.

2 Click Check configuration. If your model settings are not optimal for Polyspace,
the software displays warning messages with recommendations.

8 Configure Model for Code Analysis

8-10

3 From the Check configuration before verification menu, select either:

• On (stop for warnings) — will
• On (proceed with warnings)

4 Select Run verification.

The software runs a configuration check. If your configuration check finds errors or
warnings, the Diagnostics Viewer displays the issues and recommendations.

 Check Simulink Model Settings

8-11

If you select:

• On (stop for warnings), the analysis stops for either errors or warnings.
• On (proceed with warnings) — the analysis stops for errors, but continues

the code analysis if the configuration only has warnings.

If you alter your model settings, rebuild the model to generate fresh code. If the
generated code version does not match your model version, the software produces
warnings when you run the analysis.

More About
• “Recommended Model Settings for Code Analysis” on page 8-3

8 Configure Model for Code Analysis

8-12

Annotate Blocks for Known Results

You can annotate individual blocks in your Simulink model to inform Polyspace software
of known defects, run-time checks, or coding-rule violations. This allows you to highlight
and categorize previously identified results, so you can focus on reviewing new results.

Your Polyspace results displays the information that you provide with block annotations.
To annotate blocks:

1 In the Simulink model window, right-click the block you want to annotate.
2 From the context menu, select Polyspace > Annotate Selected Block > Edit. The

Polyspace Annotation dialog box opens.

 Annotate Blocks for Known Results

8-13

3 From the Annotation type drop-down list, select one of the following:

• Check — To indicate a Code Prover run-time error
• Defect — To indicate a Bug Finder defect
• MISRA-C — To indicate a MISRA C coding rule violation
• MISRA-C++ — To indicate a MISRA C++ coding rule violation
• JSF — To indicate a JSF C++ coding rule violation

4 If you want to highlight only one kind of result, select Only 1 check and the
relevant error or coding rule from the Select RTE check kind (or Select defect
kind, Select MISRA rule, Select MISRA C++ rule, or Select JSF rule) drop-
down list.

If you want to highlight a list of checks, clear Only 1 check. In the Enter a list of
checks (or Enter a list of defects, or Enter a list of rule numbers) field, specify
the errors or rules that you want to highlight.

5 Select a Status to describe how you intend to address the issue:

• Fix

• Improve

• Investigate

• Justified

(This status also marks the result as justified.)
• No action planned

(This status also marks the result as justified.)
• Other

6 Select a Classification to describe the severity of the issue:

• High

• Medium

• Low

• Not a defect

7 In the Comment field, enter additional information about the check.

8 Configure Model for Code Analysis

8-14

8 Click OK. The software adds the Polyspace annotation is to the block.

When you run an analysis, the Results Summary pane pre-populates the results
with your annotation.

See Also
pslinkfun

9

Configure Code Analysis Options

• “Polyspace Configuration for Generated Code” on page 9-2
• “Include Handwritten Code” on page 9-3
• “Configure Analysis Depth for Referenced Models” on page 9-4
• “Check Coding Rules Compliance” on page 9-5
• “Configure Polyspace Analysis Options and Properties” on page 9-7
• “Set Custom Target Settings” on page 9-11
• “Set Up Remote Batch Analysis” on page 9-14
• “Manage Results” on page 9-15
• “Specify Signal Ranges” on page 9-18

9 Configure Code Analysis Options

9-2

Polyspace Configuration for Generated Code

You do not have to manually create a Polyspace project or specify Polyspace options
before running an analysis for your generated code. By default, Polyspace automatically
creates a project and extracts the required information from your model. However, you
can modify or specify additional options for your analysis:

• You may incorporate separately created code within the code generated from your
Simulink model. See “Include Handwritten Code” on page 9-3.

• You may customize the options for your analysis. For example, to specify the target
environment or adjust precision settings. See “Configure Polyspace Analysis Options
and Properties” on page 9-7 and “Recommended Polyspace Bug Finder Options
for Analyzing Generated Code”.

• You may create specific configurations for batch runs. See “Save a Polyspace
Configuration File Template” on page 9-8.

• If you want to analyze code generated for a 16-bit target processor, you must specify
header files for your 16-bit compiler. See “Set Custom Target Settings” on page
9-11.

 Include Handwritten Code

9-3

Include Handwritten Code

Files such as S-function wrappers are, by default, not part of the Polyspace analysis.
However, you can add these files manually.

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace pane.

2 Select the Enable additional file list check box. Then click Select files. The Files
Selector dialog box opens.

3 Click Add. The Select files to add dialog box opens.
4 Use the Select files to add dialog box to:

• Navigate to the relevant folder
• Add the required files.

The software displays the selected files as a list under Additional files to analyze.

Note: To remove a file from the list, select the file and click Remove. To remove all
files from the list, click Remove all.

5 Click OK.

9 Configure Code Analysis Options

9-4

Configure Analysis Depth for Referenced Models

From the Polyspace pane, you can specify the analysis of generated code with respect to
model reference hierarchy levels:

• Model reference verification depth — From the drop-down list, select one of the
following:

• Current model only — Default. The Polyspace runs code from the top level
only. The software creates stubs to represent code from lower hierarchy levels.

• 1 — The software analyzes code from the top level and the next level. For
subsequent hierarchy levels, the software creates stubs.

• 2 — The software analyzes code from the top level and the next two hierarchy
levels. For subsequent hierarchy levels, the software creates stubs.

• 3 — The software analyzes code from the top level and the next three hierarchy
levels. For subsequent hierarchy levels, the software creates stubs.

• All — The software analyzes code from the top level and all lower hierarchy
levels.

• Model by model verification — Select this check box if you want the software to
analyze code from each model separately.

Note: The same configuration settings apply to all referenced models within a top model.
It does not matter whether you open the Polyspace pane from the top model window
(Code > Polyspace > Options) or through the right-click context menu of a particular
Model block within the top model. However, you can run analyses for code generated
from specific Model blocks. See “Run Analysis for Embedded Coder” on page 10-5.

 Check Coding Rules Compliance

9-5

Check Coding Rules Compliance

You can check compliance with MISRA AC AGC and MISRA C:2004, and MISRA C:2012
coding rules directly from your Simulink model.

In addition, you can choose to run coding rules checking either with or without full code
analysis.

To configure coding rules checking:

1 From the Simulink model window, select Code > Polyspace > Options. The
Polyspace pane opens.

2 In the Settings from drop-down menu, select the type of analysis you want to
perform.

Depending on the type of code generated, different settings are available. The
following tables describe the different settings.

C Code Settings

Setting Description

Project configuration Run Polyspace using the options
specified in the Project configuration.

Project configuration and MISRA

AC AGC checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with the MISRA
AC-AGC rule set.

Project configuration and MISRA

C 2004 checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with MISRA
C:2004 coding rules.

Project configuration and MISRA

C 2012 ACG checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with MISRA
C:2012 coding guidelines.

MISRA AC AGC checking Check compliance with the MISRA AC-
AGC rule set. Polyspace stops after rules
checking.

9 Configure Code Analysis Options

9-6

Setting Description

MISRA C 2004 checking Check compliance with MISRA C:2004
coding rules. Polyspace stops after rules
checking.

MISRA C 2012 ACG checking Check compliance with MISRA C:2012
coding rules using generated code
categories. Polyspace stops after
guideline checking.

C++ Code Settings

Setting Description

Project configuration Run Polyspace using the options
specified in the Project configuration.

Project configuration and MISRA

C++ rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with the MISRA C
++ coding rules.

Project configuration and JSF C

++ rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with JSF C++
coding rules.

MISRA C++ rule checking Check compliance with the MISRA C++
coding rules. Polyspace stops after rules
checking.

JSF C++ rule checking Check compliance with JSF C++ coding
rules. Polyspace stops after rules
checking.

3 Click Apply to save your settings.

 Configure Polyspace Analysis Options and Properties

9-7

Configure Polyspace Analysis Options and Properties

From Simulink, you can specify Polyspace options to change the configuration of the
Polyspace Analysis. For example, you can specify the processor type and operating
system of your target device.

For descriptions of options, see “Analysis Options for C” or “Analysis Options for C++”.

There are two ways to configure analysis options:

In this section...

“Set Advanced Analysis Options” on page 9-7
“Save a Polyspace Configuration File Template” on page 9-8
“Use a Custom Configuration File” on page 9-9
“Remove Polyspace Options From Simulink Model” on page 9-9

Set Advanced Analysis Options

1 From Simulink, select Code > Polyspace > Options.
2 In the Polyspace parameter configuration pane, select Configure.

The Polyspace Configuration window opens.
3 Set options required by your application.

The first time you open the configuration, the software sets certain options by
default depending on your code generator.

4
On the toolbar, click the Project properties icon .

9 Configure Code Analysis Options

9-8

Save a Polyspace Configuration File Template

During a batch run, you may want use different configurations. At the MATLAB
command-line, use pslinkfun('settemplate',...) to apply a configuration defined
by a configuration file template.

To create a configuration file template:

1 In the Simulink model window, select Code > Polyspace > Options. The
Parameter Configuration window opens to the Polyspace pane.

2 Click Configure.

The Polyspace Configuration window opens. Use this pane to customize the target
and cross compiler.

3 Save your changes and close.
4 Make a copy of the updated project configuration file, for example,

my_first_code_polyspace.psprj.

 Configure Polyspace Analysis Options and Properties

9-9

5 Rename the copy, for example, my_cross_compiler.psprj. This is your new
configuration file template.

To use a configuration template:

• Run the pslinkfun command in the MATLAB Command Window. For example:

pslinkfun('settemplate','C:\Work\my_cross_compiler.psprj')

• Add the file in the Parameter Configuration window. See “Use a Custom
Configuration File” on page 9-9.

Use a Custom Configuration File

If you already have a configuration you want to use, you can add the configuration file to
your project.

1 From Simulink, select Code > Polyspace > Options.
2 In the Polyspace parameter configuration pane, select Use custom project file.
3 In the text box, enter the full path to a .psprj file, or click Browse for project file

to browse for a .psprj file.

Remove Polyspace Options From Simulink Model

You can remove Polyspace configuration information from your Simulink model.

For a top model:

1 Select Code > Polyspace > Remove Options from Current Configuration.
2 Save the model.

For a Model block or subsystem:

1 Right-click the Model block or subsystem.
2 From the context menu, select Polyspace > Remove Options from Current

Configuration.
3 Save the model.

See Also
pslinkfun | pslinkoptions

9 Configure Code Analysis Options

9-10

Related Examples
• “Save a Polyspace Configuration File Template” on page 9-8

More About
• “Embedded Coder Considerations”
• “TargetLink Considerations”
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code”

 Set Custom Target Settings

9-11

Set Custom Target Settings

If your target has specific setting, you can analyze your code in context of those settings.
For example, if you want to analyze code generated for a 16-bit target processor, you
must specify header files for your 16-bit compiler. The software automatically identifies
the compiler from the Simulink model. If the compiler is 16-bit and you do not specify the
relevant header files, the software produces an error when you try to run an analysis.

Note: For a 32-bit or 64-bit target processor, the software automatically specifies the
default header file.

1 In the Simulink model window, select Code > Polyspace > Options. The
Parameter Configuration window opens to the Polyspace pane.

2 Click Configure.

The Polyspace Configuration window opens. Use this pane to customize the target
and cross compiler.

3 From the Configuration tree, expand the Target & Compiler node.
4 In the Target Environment section, use the Target processor type option to

define the size of data types.

a From the drop-down list, select mcpu...(Advanced). The Generic target
options dialog box opens.

9 Configure Code Analysis Options

9-12

Use this dialog box to create a new target and specify data types for the target.
Then click Save.

5 From the Configuration tree, select Target & Compiler > Macros. Use the
Preprocessor definitions section to define preprocessor macros for your cross-
compiler.

To add a macro, in the Macros table, select . In the new line, enter the required
text.

To remove a macro, select the macro and click .

Note: If you use the LCC cross-compiler, then you must specify the
MATLAB_MEX_FILE macro.

6 Select Target & Compiler > Environment Settings.

 Set Custom Target Settings

9-13

7 In the Include folders (or Include) section, specify a folder (or header file) path by
doing one of the following:

•
Select and enter the folder or file path.

•
Select and use the dialog box to navigate to the required folder (or file).

You can remove an item from the displayed list by selecting the item and then

clicking .
8 Save your changes and close.

To use your configuration settings in other projects, see “Save a Polyspace
Configuration File Template” on page 9-8.

9 Configure Code Analysis Options

9-14

Set Up Remote Batch Analysis

By default, the Polyspace software runs locally. To specify a remote analysis:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace pane.

2 Select Configure.
3 In the Polyspace Configuration window, select the Distributed Computing pane.
4 Select the Batch check box.
5 If you use Polyspace Metrics as a results repository, select Add to results

repository.

Before running your must also make sure you are connected to a Server.
6 From the toolbar, select Options > Preferences. For help filling in this dialog, see

“Configure Polyspace Preferences”.
7 Close the configuration window and save your changes.
8 Select Apply.

 Manage Results

9-15

Manage Results

In this section...

“Open Polyspace Results Automatically” on page 9-15
“Specify Location of Results” on page 9-16
“Save Results to a Simulink Project” on page 9-17

Polyspace creates a set of analysis results

Open Polyspace Results Automatically

You can configure the software to automatically open your Polyspace results after you
start the analysis. If you are doing a remote analysis, the Polyspace Metrics webpage
opens. When the remote job is complete, you can download your results from Polyspace
Metrics. If you are doing a local analysis, when the local job is complete, the Polyspace
environment opens the results in the Polyspace interface.

To configure the results to open automatically:

1 From the model window, select Code > Polyspace > Options.

The Polyspace pane opens.

9 Configure Code Analysis Options

9-16

2 In the Results review section, select Open results automatically after
verification.

3 Click Apply to save your settings.

Specify Location of Results

By default, the software stores your results in Current
Folder\results_model_name. Every time you rerun, your old results are over written.
To customize these options:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens to the Polyspace pane.

2 In the Output folder field, specify a full path for your results folder. By default, the
software stores results in the current folder.

3 If you want to avoid overwriting results from previous analyses, select Make output
folder name unique by adding a suffix.

 Manage Results

9-17

Instead of overwriting an existing folder, the software specifies a new location for the
results folder by appending a unique number to the folder name.

Save Results to a Simulink Project

By default, the software stores your results in Current
Folder\results_model_name. If you use a Simulink project for your model work, you
can store your Polyspace results there as well for better organization. To add your results
to a Simulink Project:

1 Open your Simulink project.
2 From the Simulink model window, select Code > Polyspace > Options. The

Configuration Parameters dialog box opens with the Polyspace pane displayed.
3 Select Add results to current Simulink Project.
4 Run your analysis.

Your results are saved to the Simulink project you opened in step 1.

9 Configure Code Analysis Options

9-18

Specify Signal Ranges

If you constrain signals in your Simulink model to lie within specified ranges, Polyspace
software automatically applies these constraints during verification of the generated
code. This can improve the precision of your results.

You can specify a range for a model signal by:

• Applying constraints through source block parameters. See “Specify Signal Range
through Source Block Parameters” on page 9-18.

• Constraining signals through the base workspace. See “Specify Signal Range through
Base Workspace” on page 9-20.

Note: You can also manually define data ranges using the DRS feature in the Polyspace
verification environment. If you manually define a DRS file, the software automatically
appends any signal range information from your model to the DRS file. However,
manually defined DRS information overrides information generated from the model for
all variables.

Specify Signal Range through Source Block Parameters

You can specify a signal range by applying constraints to source block parameters.

Specifying a range through source block parameters is often easier than creating
signal objects in the base workspace, but must be repeated for each source block. For
information on using the base workspace, see “Specify Signal Range through Base
Workspace” on page 9-20.

To specify a signal range using source block parameters:

1 Double-click the source block in your model. The Source Block Parameters dialog box
opens.

2 Select the Signal Attributes tab.
3 Specify the Minimum value for the signal, for example, -15.
4 Specify the Maximum value for the signal, for example, 15.

 Specify Signal Ranges

9-19

5 Click OK.

9 Configure Code Analysis Options

9-20

Specify Signal Range through Base Workspace

You can specify a signal range by creating signal objects in the MATLAB workspace.
This information is used to initialize each global variable to the range of valid values, as
defined by the min-max information in the workspace.

Note: You can also specify a signal range by applying constraints to individual source
block parameters. This method can be easier than creating signal objects in the base
workspace, but must be repeated for each source block. For more information, see
“Specify Signal Range through Source Block Parameters” on page 9-18.

To specify an input signal range through the base workspace:

1 Configure the signal to use, for example, the ExportedGlobal storage class:

a Right-click the signal. From the context menu, select Properties. The Signal
Properties dialog box opens.

b In the Signal name field, enter a name, for example, my_entry1.
c Select the Code Generation tab.
d From the Package drop-down menu, select Simulink.
e In the Storage class drop-down menu, select ExportedGlobal.

 Specify Signal Ranges

9-21

f Click OK, which applies your changes and closes the dialog box.
2 Using Model Explorer, specify the signal range:

a Select Tools > Model Explorer to open Model Explorer.
b From the Model Hierarchy tree, select Base Workspace.
c Click the Add Simulink Signal button to create a signal. Rename this signal,

for example, my_entry1.
d Set the Minimum value for the signal, for example, to -15.
e Set the Maximum value for the signal, for example, to 15.
f From the Storage class drop-down list, select ExportedGlobal.
g Click Apply.

10

Run Polyspace on Generated Code

• “Specify Type of Analysis to Perform” on page 10-2
• “Run Analysis for Embedded Coder” on page 10-5
• “Run Analysis for TargetLink” on page 10-6
• “Monitor Progress” on page 10-7

10 Run Polyspace on Generated Code

10-2

Specify Type of Analysis to Perform

Before running Polyspace, you can specify what type of analysis you want to run. You can
choose to run code analysis, coding rules checking, or both.

To specify the type of analysis to run:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameter window opens to the Polyspace options pane.

2 In the Settings from drop-down menu, select the type of analysis you want to
perform.

Depending on the type of code generated, different settings are available. The
following tables describe the different settings.

C Code Settings

 Specify Type of Analysis to Perform

10-3

Setting Description

Project configuration Run Polyspace using the options
specified in the Project configuration.

Project configuration and MISRA

AC AGC rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with the MISRA
AC-AGC rule set.

Project configuration and MISRA

rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with MISRA C
coding rules.

MISRA AC AGC rule checking Check compliance with the MISRA AC-
AGC rule set. Polyspace stops after rules
checking.

MISRA rule checking Check compliance with MISRA C
coding rules. Polyspace stops after rules
checking.

10 Run Polyspace on Generated Code

10-4

C++ Code Settings

Setting Description

Project configuration Run Polyspace using the options
specified in the Project configuration.

Project configuration and MISRA

C++ rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with the MISRA C
++ coding rules.

Project configuration and JSF C

++ rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with JSF C++
coding rules.

MISRA C++ rule checking Check compliance with the MISRA C++
coding rules. Polyspace stops after rules
checking.

JSF C++ rule checking Check compliance with JSF C++ coding
rules. Polyspace stops after rules
checking.

3 Click Apply to save your settings.

 Run Analysis for Embedded Coder

10-5

Run Analysis for Embedded Coder

To start Polyspace with:

• Code generated from the top model, from the Simulink model window, select Code >
Polyspace > Verify Code Generated for > Model.

• All code generated as model referenced code, from the model window, select Code >
Polyspace > Verify Code Generated for > Referenced Model.

• Model reference code associated with a specific block or subsystem, right-click the
Model block or subsystem. From the context menu, select Verify Code Generated
for > Selected Subsystem.

Note: You can also start the Polyspace software from the Polyspace configuration
parameter pane by clicking Run verification.

When the Polyspace software starts, messages appear in the MATLAB Command
window:
Starting Polyspace verification for Embedded Coder

Creating results folder C:\PolySpace_Results\results_my_first_code

 for system my_first_code

Checking Polyspace Model-Link Configuration:

Parameters used for code verification:

 System : my_first_code

 Results Folder : C:\PolySpace_Results\results_my_first_code

 Additional Files : 0

 Remote : 0

 Model Reference Depth : Current model only

 Model by Model : 0

 DRS input mode : DesignMinMax

 DRS parameter mode : None

 DRS output mode : None

...

Follow the progress of the analysis in the MATLAB Command window. If you are
running a remote, batch, analysis you can follow the later stages through the Polyspace
Job Monitor.

The software writes status messages to a log file in the results folder.

10 Run Polyspace on Generated Code

10-6

Run Analysis for TargetLink

To start the Polyspace software:

1 In your model, select the Target Link subsystem.
2 In the Simulink model window select Code > Polyspace > Verify Code

Generated for > Selected Target Link Subsystem.

Messages appear in the MATLAB Command window:
Starting Polyspace verification for Embedded Coder

Creating results folder results_WhereAreTheErrors_v2

 for system WhereAreTheErrors_v2

Parameters used for code verification:

 System : WhereAreTheErrors_v2

 Results Folder : H:\Desktop\Test_Cases\ModelLink_Testers

 \results_WhereAreTheErrors_v2

 Additional Files : 0

 Verifier settings : PrjConfig

 DRS input mode : DesignMinMax

 DRS parameter mode : None

 DRS output mode : None

 Model Reference Depth : Current model only

 Model by Model : 0

The exact messages depend on the code generator you use and the Polyspace
product. The software writes status messages to a log file in the results folder.

Follow the progress of the software in the MATLAB Command Window. If you are
running a remote, batch analysis, you can follow the later stages through the Polyspace
Job Monitor

 Monitor Progress

10-7

Monitor Progress

In this section...

“Local Analyses” on page 10-7
“Remote Batch Analyses” on page 10-7

Local Analyses

For a local Polyspace runs, you can follow the progress of the software in the MATLAB
Command Window. The software also saves the status messages to a log file in the
results folder.

Remote Batch Analyses

For a remote analysis, you can follow the initial stages of the analysis in the MATLAB
Command window.

Once the compilation phase is complete, you can follow the progress of the software using
the Polyspace Job Monitor.

From Simulink, select Code > Polyspace > Open Job Monitor

11

Check Coding Rules from Eclipse

• “Activate Coding Rules Checker” on page 11-2
• “Select Specific MISRA or JSF Coding Rules” on page 11-6
• “Create Custom Coding Rules File” on page 11-9
• “Contents of Custom Coding Rules File” on page 11-11
• “Exclude Files From Analysis” on page 11-12
• “Allow Custom Pragma Directives” on page 11-13
• “Specify Boolean Types” on page 11-14
• “Find Coding Rule Violations” on page 11-15
• “Review Coding Rule Violations” on page 11-16
• “Apply Coding Rule Violation Filters” on page 11-18

11 Check Coding Rules from Eclipse

11-2

Activate Coding Rules Checker

This example shows how to activate the coding rules checker before you start an analysis.
This activation enables the Polyspace Bug Finder plug-in to search for coding rule
violations. You can view the coding rule violations in your analysis results.

1 Open project configuration.
2 On the Configuration pane, select Coding Rules.
3 Select the check box for the type of coding rules that you want to check.

For C code, you can check compliance with:

• MISRA C:2004
• MISRA AC AGC
• MISRA C:2012

If you have generated code, use the Use generated code requirements option
to use the MISRA C:2012 categories for generated code.

• Custom coding rules

For C++ code, you can check compliance with:

• MISRA C++: 2008
• JSF C++
• Custom coding rules

4 For each rule type that you select, from the drop-down list, select the subset of rules
to check.

MISRA C:2004

Option Description

required-rules All required MISRA C:2004 coding rules.
all-rules AllMISRA C:2004 coding rules (required and advisory).

SQO-subset1

A small subset of MISRA C:2004 rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

 Activate Coding Rules Checker

11-3

Option Description

SQO-subset2

A second subset of rules that include the rules in SQO-
subset1 and contain some additional rules. In Polyspace
Code Prover, observing the additional rules can further
reduce the number of unproven results.

custom A set of MISRA C:2004 coding rules that you specify.

MISRA AC AGC

Option Description

OBL-rules All required MISRA AC AGC coding rules.

OBL-REC-rules
All required and recommended MISRA AC AGC coding
rules.

all-rules All required, recommended, and readability coding rules.

SQO-subset1

A small subset of MISRA AC AGC rules. In Polyspace
Code Prover, observing these rules can reduce the number
of unproven results.

SQO-subset2

A second subset of MISRA AC AGC rules that include the
rules in SQO-subset1 and contain some additional rules.
In Polyspace Code Prover, observing the additional rules
can further reduce the number of unproven results.

custom A set of MISRA AC AGC coding rules that you specify.

MISRA C:2012

Option Description

mandatory

All mandatory MISRA C:2012 coding rules. If you have
generated code, also use the Use generated code
requirements option categorization for generated code.

mandatory-required

All mandatory and required MISRA C:2012 coding rules.
If you have generated code, also use the Use generated
code requirements option categorization for generated
code.

all
All MISRA C:2012 coding rules (mandatory, required, and
advisory).

11 Check Coding Rules from Eclipse

11-4

Option Description

SQO-subset1

A small subset of MISRA C rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

SQO-subset2

A second subset of rules that include the rules in SQO-
subset1 and contain some additional rules. In Polyspace
Code Prover, observing the additional rules can further
reduce the number of unproven results.

custom A set of MISRA C:2012 coding rules that you specify.

MISRA C++

Option Description

required-rules All required MISRA C++ coding rules.
all-rules All required and advisory MISRA C++ coding rules.

SQO-subset1

A small subset of MISRA C++ rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

SQO-subset2

A second subset of rules with indirect impact on the
selectivity in addition to SQO-subset1. In Polyspace Code
Prover, observing the additional rules can further reduce
the number of unproven results.

custom A specified set of MISRA C++ coding rules.

JSF C++

Option Description

shall-rules Shall rules are mandatory requirements. These rules
require verification.

shall-will-rules All Shall and Will rules. Will rules are intended to be
mandatory requirements. However, these rules do not
require verification.

all-rules All Shall, Will, and Should rules. Should rules are
advisory rules.

custom A set of JSF C++ coding rules that you specify.

 Activate Coding Rules Checker

11-5

5 If you select Check custom rules, specify the path to your custom rules file or click
Edit to create one.

When rules checking is complete, the software displays the coding rule violations in
purple on the Results Summary pane.

Related Examples
• “Select Specific MISRA or JSF Coding Rules”
• “Create Custom Coding Rules File”

11 Check Coding Rules from Eclipse

11-6

Select Specific MISRA or JSF Coding Rules

This example shows how to specify a subset of MISRA or JSF rules for the coding rules
checker. If you select custom from the MISRA or JSF drop-down list, you must provide a
file that specifies the rules to check.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules.
3 Select the check box for the type of coding rules you wish to check
4 From the corresponding drop-down list, select custom. The software displays a new

field for your custom file.
5 To the right of this field, click Edit. A New File window opens, displaying a table of

rules.

 Select Specific MISRA or JSF Coding Rules

11-7

Select On for the rules you want to check.
6 Click OK to save the rules and close the window.

The Save as dialog box opens.
7 In the File field, enter a name for the rules file.
8 Click OK to save the file and close the dialog box.

11 Check Coding Rules from Eclipse

11-8

The full path to the rules file appears. To reuse this rules file for other projects, type

this path name or use the icon in the New File window.

Related Examples
• “Activate Coding Rules Checker”
• “Create Custom Coding Rules File”

 Create Custom Coding Rules File

11-9

Create Custom Coding Rules File

This example shows how to create a custom coding rules file. You can use this file to
check names or text patterns in your source code against custom rules that you specify.
For each rule, you specify a pattern in the form of a regular expression. The software
compares the pattern against identifiers in the source code and determines whether the
custom rule is violated.

1 Create Coding Rules File

1 Create a Polyspace project. Add printInitialValue.c to the project.
2 On the Configuration pane, select Coding Rules. Select the Check custom

rules box.
3

Click .

The New File window opens, displaying a table of rule groups.
4 From the drop-down list Set the following state to all Custom C, select Off.

Click Apply.
5 Expand the Structs node. For the option 4.3 All struct fields must follow the

specified pattern:

Column Title Action

On Select .
Convention Enter All struct fields must

begin with s_ and have capital

letters

Pattern Enter s_[A-Z0-9_]
Comment Leave blank. This column is for

comments that appear in the coding
rules file alone.

2 Review Coding Rule Violations

1 Save the file and run the verification. On the Results Summary pane, you see
two violations of rule 4.3. Select the first violation.

a On the Source pane, the line int a; is marked.

11 Check Coding Rules from Eclipse

11-10

b On the Check Details pane, you see the error message you had entered,
All struct fields must begin with s_ and have capital

letters

2 Right-click on the Source pane and select Open Editor. The file
printInitialValue.c opens in the Code Editor pane or an external text
editor depending on your Preferences.

3 In the file, replace all instances of a with s_A and b with s_B. Rerun the
verification.

The custom rule violations no longer appear on the Results Summary pane.

Related Examples
• “Activate Coding Rules Checker”
• “Select Specific MISRA or JSF Coding Rules”

More About
• “Contents of Custom Coding Rules File”

 Contents of Custom Coding Rules File

11-11

Contents of Custom Coding Rules File

In a custom coding rules file, each rule appears in the following format:
N.n off|on

convention=violation_message

pattern=regular_expression

• N.n — Custom rule number, for example, 1.2.
• off — Rule is not considered.
• on — The software checks for violation of the rule. After verification, it displays the

coding rule violation on the Results Summary pane.
• violation_message — Software displays this text in an XML file within the

Results/Polyspace-Doc folder.
• regular_expression — Software compares this text pattern against a source code

identifier that is specific to the rule. See “Custom Coding Rules”.

The keywords convention= and pattern= are optional. If present, they apply to
the rule whose number immediately precedes these keywords. If convention= is not
given for a rule, then a standard message is used. If pattern= is not given for a rule,
then the default regular expression is used, that is, .*.

Use the symbol # to start a comment. Comments are not allowed on lines with the
keywords convention= and pattern=.

The following example contains three custom rules: 1.1, 8.1, and 9.1.
Custom rules configuration file

1.1 off # Disable custom rule number 1.1

8.1 on # Violation of custom rule 8.1 produces a warning

convention=Global constants must begin by G_ and must be in capital letters.

pattern=G_[A-Z0-9_]*

9.1 on # Non-adherence to custom rule 9.1 produces a warning

convention=Global variables should begin by g_.

pattern=g_.*

Related Examples
• “Create Custom Coding Rules File”

11 Check Coding Rules from Eclipse

11-12

Exclude Files From Analysis

This example shows how to exclude certain files from coding rules checking and defect
checking.

1 Open the project configuration.
2 In the Configuration tree view, select Inputs & Stubbing.
3 Select the Files and folders to ignore check box.
4 From the corresponding drop-down list, select one of the following:

• all-headers (default) — Excludes header files in the Include folders of your
project. For example .h or .hpp files.

• all — Excludes all include files in the Include folders of your project. For
example, if you are checking a large code base with standard or Visual headers,
excluding include folders can significantly improve the speed of code analysis.

• custom — Excludes files or folders specified in the File/Folder view. To add

files to the custom File/Folder list, select to choose the files and folders to
exclude. To remove a file or folder from the list of excluded files and folders, select

the row. Then click .

Related Examples
• “Customize Analysis Options” on page 12-3

 Allow Custom Pragma Directives

11-13

Allow Custom Pragma Directives

This example shows how to exclude custom pragma directives from coding rules
checking. MISRA C rule 3.4 requires checking that pragma directives are documented
within the documentation of the compiler. However, you can allow undocumented
pragma directives to be present in your code.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules.
3

To the right of Allowed pragmas, click .

In the Pragma view, the software displays an active text field.
4 In the text field, enter a pragma directive.
5

To remove a directive from the Pragma list, select the directive. Then click .

Related Examples
• “Activate Coding Rules Checker”

11 Check Coding Rules from Eclipse

11-14

Specify Boolean Types

This example shows how to specify data types you want Polyspace to consider as Boolean
during MISRA C rules checking. The software applies this redefinition only to data types
defined by typedef statements. The use of this option may affect the checking of MISRA
C:2004 rules 12.6, 13.2, 15.4, and MISRA C:2012 rules 14.4, 16.7.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules.
3

To the right of Effective boolean types, click .

In the Type view, the software displays an active text field.
4 In the text field, specify the data type that you want Polyspace to treat as Boolean.
5

To remove a data type from the Type list, select the data type. Then click .

Related Examples
• “Activate Coding Rules Checker”

 Find Coding Rule Violations

11-15

Find Coding Rule Violations

This example shows how to check for coding rule violations alone.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules. Activate the desired coding

rule checker.
3 In the Configuration tree view, select Bug Finder Analysis.
4 Clear the Find defects check box.
5

Click to run the coding rules checker without checking defects.

You can view the results by selecting the RuleSet-report.xml file from the results
folder.

Related Examples
• “Activate Coding Rules Checker”
• “Select Specific MISRA or JSF Coding Rules”
• “Review Coding Rule Violations”

11 Check Coding Rules from Eclipse

11-16

Review Coding Rule Violations

This example shows how to review coding rule violations once code analysis is complete.
After analysis, the Results Summary tab displays the rule violations with a

• symbol for predefined coding rules such as MISRA C:2004.
• symbol for custom coding rules.

1 Select a coding-rule violation on the Results Summary pane.

• The predefined rules such as MISRA or JSF are indicated by .
• The custom rules are indicated by .

2 On the Check Details pane, view the location and description of the violated rule.
In the source code, the line containing the violation appears highlighted.

3 Review the violation. On the Results Summary pane, select a Classification to
describe the severity of the issue:

• High

• Medium

• Low

• Not a defect

 Review Coding Rule Violations

11-17

4 Select a Status to describe how you intend to address the issue:

• Fix

• Improve

• Investigate

• Justified

(This status also marks the result as justified.)
• No action planned

(This status also marks the result as justified.)
• Other

You can also define your own statuses.
5 In the comment box, enter additional information about the violation.
6 To open the source file that contains the coding rule violation, on the Source pane,

right-click the code with the purple check. From the context menu, select Open
Editor. The file opens in the Code Editor pane or an external text editor depending
on your Preferences.

7 Fix the coding rule violation.
8 When you have corrected the coding rule violations, run the analysis again.

Related Examples
• “Activate Coding Rules Checker”
• “Find Coding Rule Violations”
• “Apply Coding Rule Violation Filters”

11 Check Coding Rules from Eclipse

11-18

Apply Coding Rule Violation Filters

This example shows how to use filters in the Results Summary pane to focus on
specific kinds of coding rule violations. By default, the software displays both coding rule
violations and defects.

Group Violations

1 On the Results Summary pane, select Group by > Family.

The rules are grouped by numbers. Each group corresponds to a certain code
construct.

2 Expand the group nodes to select an individual coding rule violation.

Filter Violations

1 On the Results Summary pane, place your cursor on the Check column header.
Click the filter icon that appears.

2 From the context menu, clear the All check box.
3 Select the violated rule numbers that you want to focus on.
4 Click OK.

Related Examples
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

12

Find Bugs from Eclipse

• “Run Analysis” on page 12-2
• “Customize Analysis Options” on page 12-3

12 Find Bugs from Eclipse

12-2

Run Analysis

1 In the Project Explorer, select the files that you want to analyze.
2 Do one of the following to run an analysis:

• Right-click on your selection and from the context menu select Run Polyspace
Bug Finder

• From the global menu, select Polyspace > Run Polyspace

Follow your analysis in the Output Summary tab of the Polyspace log window. If
your analysis fails, error and warning messages appear on the same tab.

 Customize Analysis Options

12-3

Customize Analysis Options

The software uses a set of default analysis options preconfigured for your coding
language and operating system. For each project, you can customize your configuration.

1 From the global menu, select Polyspace > Configure Project.

The Polyspace Bug Finder Configuration window appears.
2 Select the different nodes to change your analysis configuration.

For example:

a Select the Coding Rules node.
b Select Check MISRA C:2004 to check for violations of MISRA C:2004 coding

rules.

For information about the different analysis options, see “Analysis Options for C” or
“Analysis Options for C++”.

13

View Results in Eclipse

• “Filter and Group Results” on page 13-2
• “View Results” on page 13-8
• “Review and Fix Results” on page 13-9
• “Understanding the Results Views” on page 13-13

13 View Results in Eclipse

13-2

Filter and Group Results

This example shows how to filter and group defects on the Results Summary tab. To
organize your review of results, use filters and groups when you want to:

• Review certain categories of defects in preference to others. For instance, you first
want to address the defects resulting from Missing or invalid return statement.

• Review only new results found since the last analysis.
• Not address the full set of coding rule violations detected by the coding rules checker.
• Review only those defects that you have already assigned a certain status. For

instance, you want to review only those defects to which you have assigned the status,
Investigate.

• Review defects from a particular file or function. Because of continuity of code,
reviewing these defects together can help you organize your review process.

If you have written the code for a particular source file, you can review the defects
only in that file.

Review Defects in a Given Category

1 To review the defects resulting from Missing or invalid return statement:

a On the Results Summary tab, select Group by > Family.

The defects are grouped by type.

b Under the Data-flow node, expand the subnode Missing or invalid return
statement.

 Filter and Group Results

13-3

c To see further information about an instance, select it. The information appears
on the Check Details tab.

2 To view only the defects resulting from Missing or invalid return statement:

a On the Results Summary tab, select Group by > None.

The defects appear ungrouped.
b Click the filter icon on the Check column head.

A context menu lists the filter options available.

13 View Results in Eclipse

13-4

c Clear the All check box.
d Select the Missing or invalid return statement check box. Click OK.

The Results Summary tab displays only the defects resulting from the
Missing or invalid return statement error.

Review New Results Only

To review only new results found since the last analysis, on the Results Summary
pane, select New results.

Review Defects with Given Status

To review only the defects with Investigate status:

1 On the Results Summary tab, click the filter icon on the Status column head.

A context menu lists the filter options available.

 Filter and Group Results

13-5

2 Clear the All check box.
3 Select the Investigate check box. Click OK.

The Results Summary tab displays only the defects with the Investigate status.

Review Defects in a File

1 To review the defects in the file, Missing_Return.c:

a On the Results Summary tab, select Group by > File.

The defects displayed are grouped by files. The file names are sorted
alphabetically. Within each file name, the defects are grouped by functions,
sorted alphabetically.

13 View Results in Eclipse

13-6

b To view the defects in Missing_Return.c, expand a function name under the
node, Missing_Return.c - Defects.

To view further information on a defect, select the defect. The information
appears on the Check Details tab.

2 To view only the defects in Missing_Return.c:

a On the Results Summary tab, select Group by > None.

 Filter and Group Results

13-7

The Results Summary tab displays all results ungrouped.
b Click the filter icon on the File column head.

A context menu lists the filter options available.

c Clear the All check box.
d Select the Missing_Return.c check box. Click OK.

The Results Summary tab displays only the defects in Missing_Return.c.

Tip If you apply a filter on a column on the Results Summary pane, the column header
displays the number of check boxes selected in the filter menu. Use this information to
keep track of the filters you applied.

Related Examples
• “View Results” on page 13-8
• “Review and Fix Results” on page 13-9

13 View Results in Eclipse

13-8

View Results

This example shows how to view Polyspace Bug Finder results. After you run an
analysis, you can view the results either in Eclipse or from the Polyspace Bug Finder
interface.

In this section...

“View Results in Eclipse” on page 13-8
“View Results in Polyspace Environment” on page 13-8

View Results in Eclipse

After you run an analysis in Eclipse, your results automatically appear on the Results
Summary tab.

• If you closed the Results Summary tab, select Polyspace > Show View > Show
Results Summary view to reopen the tab.

• If you need to reload the results, select Polyspace > Reload results.

This option is useful when you reopen Eclipse or when you are switching between
Polyspace projects.

View Results in Polyspace Environment

To view your results in the Polyspace Bug Finder interface, select Polyspace > Open
Results in PVE.

Note: You can view defects, coding rule violations and code metrics from the Eclipse
environment. However, you can impose limits on metrics only from the Polyspace
environment. For more information, see “Review Code Metrics”.

Related Examples
• “Run Analysis”

 Review and Fix Results

13-9

Review and Fix Results

This example shows how to review and comment results obtained from Polyspace Bug
Finder analysis. When reviewing results, you can assign a status and classification to the
defects and enter comments to describe the results of your review. These actions help you
to track the progress of your review and avoid reviewing the same defect twice. If you run
successive analyses on the same file, the review status, classification and comments from
the previous analysis will be automatically imported into the next.

Review and Comment Individual Defect

1 On the Results Summary tab, select the defect that you want to review.

The Check Details tab displays information about the current defect. The source
code where the defect appears is highlighted.

2 On the Results Summary tab, enter a Classification for the defect to describe its
severity:

13 View Results in Eclipse

13-10

• High

• Medium

• Low

• Not a defect

3 On the Results Summary tab, enter a Status to describe how you intend to address
the defect:

• Fix

• Improve

• Investigate

• Justified

• No action planned

• Other

4 On the Results Summary tab, click the Comment field. Enter remarks, for
example, defect or justification information, in the new window that opens.

Review and Comment a Group of Defects

1 On the Results Summary tab, select a group of defects using one of the following
methods:

• For contiguous defects, click the first defect. Then Shift-click the next defect.
• For non-contiguous defects, Ctrl-click each defect.

 Review and Fix Results

13-11

• For defects of a similar category, right-click one defect from that category. From
the context menu, select Select All "DefectName" Checks, for instance, Select
All "Non-initialized pointer" Checks.

13 View Results in Eclipse

13-12

2 On the Results Summary tab, enter Classification, Status and Comments. The
software applies this information to all selected defects.

Related Examples
• “View Results” on page 13-8
• “Filter and Group Results” on page 13-2

 Understanding the Results Views

13-13

Understanding the Results Views

In this section...

“Results Summary” on page 13-13
“Check Details” on page 13-15

Results Summary

The Results Summary tab lists the defects and coding rule violations along with their
attributes. To organize your results review, from the Group by list on this tab, select one
of the following options:

• None: Lists defects and coding rule violations in alphabetical order.
• Family: Lists results grouped by category. For more information on the defects

covered by a category, see “Polyspace Bug Finder Results”.
• Class: Lists results grouped by class. Within each class, the results are grouped

by method. The first group, Global Scope, lists results not occurring in a class
definition.

This option is available for C++ code only.
• File: Lists results grouped by file. Within each file, the results are grouped by

function.

For each defect, the Results Summary pane contains the defect attributes, listed in
columns:

Attribute Description

Family Group to which the defect belongs. For instance, if you choose
the grouping Checks by File/Function, this column
contains the name of the file and function containing the
defect.

ID Unique identification number of the defect. In the default view
on the Results Summary pane, the defects appear sorted by
this number.

Type Defect or coding rule violation.
Category Category of the defect. For more information on the defects

covered by a category, see the defect reference pages.

13 View Results in Eclipse

13-14

Attribute Description

Check Description of the defect
CWE ID CWE ID-s that correspond to the defect. For more information,

see “Mapping Between CWE Identifiers and Defects”.
File File containing the instruction where the defect occurs
Class Class containing the instruction where the defect occurs. If the

defect is not inside a class definition, then this column contains
the entry, Global Scope.

Function Function containing the instruction where the defect occurs.
If the function is a method of a class, it appears in the format
class_name::function_name.

Classification Level of severity you have assigned to the defect. The possible
levels are:

• High

• Medium

• Low

• Not a defect

Status Review status you have assigned to the check. The possible
statuses are:

• Fix

• Improve

• Investigate

• Justified

• No action planned

• Other

Comments Comments you have entered about the check

To show or hide any of the columns, right-click anywhere on the column titles. From the
context menu, select or clear the title of the column that you want to show or hide.

Using this pane, you can:

 Understanding the Results Views

13-15

• Navigate through the checks. For more information, see “Review and Fix Results” on
page 13-9.

• Organize your check review using filters on the columns. For more information, see
“Filter and Group Results” on page 13-2.

Check Details

The Check Details pane contains detailed information about a specific defect. Select a
defect on the Results Summary pane to reveal further information about the defect on
the Check Details pane.

• The top right hand corner shows the file and function containing the defect, in the
format file_name/function_name.

• The yellow box contains the name of the defect, along with an explanation.
• The Event column lists the sequence of code instructions causing the defect. The

Scope column lists the name of the function containing the instructions. The Line
column lists the line number of the instructions.

• The Variable trace check box when selected reveals an additional set of instructions
that are related to the defect.

•
The button allows you to access documentation for the defect.

14

Check Coding Rules from Microsoft
Visual Studio

• “Activate C++ Coding Rules Checker” on page 14-2
• “Exclude Files From Analysis” on page 14-4

14 Check Coding Rules from Microsoft Visual Studio

14-2

Activate C++ Coding Rules Checker

To check coding rule compliance, before running an analysis, you must set an option in
your project. Polyspace software finds the violations during the compile phase. You can
view coding rule violations alongside your analysis results.

To set the rule checking option:

1 Select the files you wish to analyze.
2 Right-click on your selection and select Edit Polyspace Configuration.
3 In the Polyspace Bug Finder Configuration window, from the Configuration tree,

select Coding Rules.
4 Under Coding Rules, select the check box next to the type of coding rules you wish

to check.

For C++ code, you can check compliance with MISRA C++ or JSF C++, and a custom
rules file.

5 For MISRA and JSF rule checking, you can select a subset of rules to check from the
corresponding drop-down list.

The tables below show the options for each coding rule set:

MISRA C++

Option Explanation

required-rules
All required MISRA C++ coding rules. Violations are
reported as warnings.

all-rules
All required and advisory MISRA C++ coding rules.
Violations are reported as warnings.

SQO-subset1

A subset of MISRA C++ rules that have a direct impact on
the selectivity. Violations are reported as warnings. For
more information, see “Software Quality Objective Subsets
(C++)” on page 2-62.

SQO-subset2

A second subset of rules that have an indirect impact on
the selectivity, as well as the rules contained in SQO-
subset1. Violations are reported as warnings. For more
information, see “Software Quality Objective Subsets (C+
+)” on page 2-62.

 Activate C++ Coding Rules Checker

14-3

Option Explanation

custom

A specified set of MISRA C++ coding rules. When you
select this option, you must specify the MISRA C++ rules
to check and whether to report an error or warning for
violations of each rule. For more information, see “Select
Specific MISRA or JSF Coding Rules” on page 3-6.

JSF C++

Option Explanation

shall-rules All Shall rules, which are mandatory rules that require
checking.

shall-will-rules All Shall and Will rules. Will rules are mandatory rules
that do not require checking.

all-rules All Shall, Will, and Should rules. Should rules are
advisory rules.

custom A specified set of JSF C++ coding rules. When you select
this option, you must specify the JSF C++ rules to check
and whether to report an error or warning for violations
of each rule. For more information, see “Select Specific
MISRA or JSF Coding Rules” on page 3-6.

6 For Custom rule checking, in the corresponding field, specify the path to your custom
rules file or click Edit to create one. See “Create Custom Coding Rules” on page 3-9
for more information.

7 Save you changes and close the configuration window.

When you run an analysis, Polyspace checks coding rule compliance during the
compilation phase of the analysis.

14 Check Coding Rules from Microsoft Visual Studio

14-4

Exclude Files From Analysis

This example shows how to exclude files from coding rules checking and defect checking.
Excluding header files, include files, or files your are not working on allows you focus on
defects in your purview.

1 Open the project configuration.
2 In the Configuration tree view, select Inputs & Stubbing.
3 Select the Files and folders to ignore check box.
4 From the corresponding drop-down list, select one of the following:

• all-headers (default) — Excludes header files in the Include folders of your
project. For example .h or .hpp files.

• all — Excludes all include files in the Include folders of your project. For
example, if you are checking a large code base with standard or Visual headers,
excluding include folders can significantly improve the speed of code analysis.

• custom — Excludes files or folders specified in the File/Folder view. To add

files to the custom File/Folder list, select to choose the files and folders to
exclude. To remove a file or folder from the list of excluded files and folders, select

the row. Then click .

Related Examples
• “Customize Polyspace Options”

15

Find Bugs from Microsoft Visual
Studio

• “Run Polyspace in Visual Studio” on page 15-2
• “Monitor Progress in Visual Studio” on page 15-5
• “Customize Polyspace Options” on page 15-8
• “Configuration File and Default Options” on page 15-9
• “Bug Finding in Visual Studio” on page 15-10

15 Find Bugs from Microsoft Visual Studio

15-2

Run Polyspace in Visual Studio

To set up and start an analysis:

1 In the Solution Explorer view, select one or more files that you want to analyze.
2 Right-click the selection, and select Polyspace Verification.

The Easy Settings dialog box opens.

3 In the Easy Settings dialog box, you can specify the following options for your
analysis:

 Run Polyspace in Visual Studio

15-3

• Under Settings, configure the following:

• Precision — Precision of analysis
• Passes — Level of analysis
• Results folder – Location where software stores analysis results

• Under Verification Mode Settings, configure the following:

• Generate main — Polyspace generates a main or Use existing — Polyspace
uses an existing main

• Class — Name of class to analyze
• Class analyzer calls — Functions called by generated main
• Class only — Analysis of class contents only
• Main generator write — Type of initialization for global variables
• Main generator calls — Functions (not in a class) called by generated main
• Function called before main — Function called before the generated main

• Under Scope, you can modify the list of files and C++ classes to analyze.

a Select . The Select Files and Classes dialog box opens.

15 Find Bugs from Microsoft Visual Studio

15-4

b Select the classes that you want to analyze, then click Add.

In the Configuration pane in the Polyspace environment, you can configure advanced
options not in the Easy Settings dialog box. See “Customize Polyspace Options” on
page 15-8.

4 Make sure the Use Code Prover analysis check box is cleared.
5 Click Start to start the analysis.

To follow the progress of an analysis, see “Monitor Progress in Visual Studio” on
page 15-5

 Monitor Progress in Visual Studio

15-5

Monitor Progress in Visual Studio

Local Analysis

1 Open the Polyspace Log view to follow the progress of your analysis.

If Polyspace finds compilation issues, the errors are highlighted as links. Click a link
to display the file and line that produced the error.

15 Find Bugs from Microsoft Visual Studio

15-6

 Monitor Progress in Visual Studio

15-7

2 To stop an analysis, on the Polyspace Log toolbar, click X.

Remote Analysis

1 Open the Polyspace Log view to follow the progress of your analysis.

If Polyspace finds compilation issues, the errors are highlighted as links. Click a link
to display the file and line that produced the error.

To stop a verification during the compilation phase, on the Polyspace Log toolbar,
click X.

After compilation, Polyspace sends your analysis to the remote server.
2 Select Polyspace > Job Monitor.
3 In the Polyspace Job Monitor, right-click your project and select View Log File

To stop a remote analysis after compilation, use the Job Monitor interface.

Related Examples
• “Run Polyspace in Visual Studio” on page 15-2
• “Open Results in Polyspace Environment” on page 16-2

15 Find Bugs from Microsoft Visual Studio

15-8

Customize Polyspace Options

In the Easy Settings dialog box in Visual Studio, you specify only a subset of the
Polyspace analysis options.

To customize other analysis options:

1 Select the files you wish to analyze.
2 Right-click on your selection and select Edit Polyspace Configuration from the

context menu.
3 In the Polyspace Bug Finder configuration window, use the different panes to

customize your analysis options.

For more information about specific options, see “Analysis Options for C++”.
4 Save your changes and close the configuration window.

Next time you run an analysis, Polyspace uses the
ProjectName_UserSettings.psprj settings.

 Configuration File and Default Options

15-9

Configuration File and Default Options

Some options are set by default while others are extracted from the Visual Studio project
and stored in the associated Polyspace configuration file.

• The following table shows Visual Studio options that are extracted automatically, and
their corresponding Polyspace options:

Visual Studio Option Polyspace Option

/D <name> -D <name>

/U <name> -U <name>

/MT -D_MT

/MTd -D_MT -D_DEBUG

/MD -D_MT -D_DLL

/MDd -D_MT -D_DLL -D_DEBUG

/MLd -D_DEBUG

/Zc:wchar_t -wchar-t-is keyword

/Zc:forScope -for-loop-index-scope in

/FX -support-FX-option-results

/Zp[1,2,4,8,16] -pack-alignment-value

[1,2,4,8,16]

• Source and include folders (-I) are also extracted automatically from the Visual
Studio project.

• Default options passed to the kernel depend on the Visual Studio release: -dialect
Visual7.1 (or -dialect visual8) -OS-target Visual -target i386 -
desktop

15 Find Bugs from Microsoft Visual Studio

15-10

Bug Finding in Visual Studio

You can apply the bug finding functionality of Polyspace software to code that you
develop within the Visual Studio Integrated Development Environment (IDE).

A typical workflow is:

1 Use the Visual Studio editor to create a project and develop code within this project.
2 Set up the Polyspace analysis by configuring analysis options and settings, and then

start the analysis.
3 Monitor the analysis.
4 Open the verification results and review in the Polyspace environment.

Before you can verify code in Visual Studio, you must install the Polyspace add-in for
Visual Studio. For more information , see “Install Polyspace Add-In for Visual Studio”.

16

Open Results from Microsoft Visual
Studio

16 Open Results from Microsoft Visual Studio

16-2

Open Results in Polyspace Environment

After your analysis finishes running in Visual Studio, open the Polyspace environment to
view your results. If you ran a server analysis, download the results before opening the
Polyspace environment.

To view your results:

•
From the Polyspace Log window, select .

• Select Polyspace > Polyspace.

Then, open your results from the Polyspace interface. For instructions, see “Open
Results”.

Related Examples
• “Review and Comment Results”
• “Run Polyspace in Visual Studio” on page 15-2

